
Howard University Physics Ph.D. Qualifier Classical Mechanics, 8/19/96

1. A bead of mass m, under no external force, is attached by a massless inextensible cord
which is completely wound aroud a cylinder of radius R. This cylinder is placed within a
concentric cylindical shell, of radius 3R. A radially directed kick sends the bead spiraling
outward with initial velocity ~v0, unwinding the cord as shown:

R3R

m
~v0

t = 0

R3R

m

`

t > 0

[7pts] a. Using the length of the unwound piece of the cord, `, as a generalized coordinate,
write down the Lagrangian and determine the equation of motion.

[7pts] b. Find the trajectory ` = `(t) of the bead.

[7pts] c. Find the angular momentum of the bead about the axis of the cylinder and the kinetic
energy after a time t.

[4pts] d. Find the time when the bead will hit the outer cylinder.
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2. This is a relativistic problem with the speed of light, c, set equal to 1. Energy means
total energy including rest mass energy. In the laboratory frame (LAB), a particle of mass
m1 and momentum pL (and energy EL) collides with a particle of mass m2 at rest.

[10pts] a. The center of mass (CM) frame is moving at constant speed β relative to the LAB
frame. We define CM as the frame where m1 and m2 have equal and opposite mo-
mentum. Show that

β =
pL

m2 + EL
.

(Hint: Use Lorentz transformation between the LAB and the CM frames.)

[8pts] b. Show that the total energy, W , of both particles in CM frame is given by the relation
W 2 = m 2

1 +m 2
2 + 2m2EL.

[7pts] c. Show that, in the CM frame, in the non-relativistic limit

β =
pL

m1 +m2
, p =

( m2

m1 +m2

)
pL , W = m1 +m2 +

( m2

m1 +m2

) p 2
L

2m1
.
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3. A ring with mass m1 slides over a uniform rod which has a mass m2 and length `.
The rod is pivoted at one end and hangs vertically. The ring is secured to the pivot by a
massless spring with the spring constant k and unstretched length r0, and is constrained to
slide along the rod without friction. The rod and the ring are set into motion in a vertical
plane. The position of the ring and the rod at time t is given by r(t) and θ(t), as shown
in the figure.

m1

m2

k

r

θ

[12pts] a. Write the Lagrangian for the system.

[5pts] b. Obtain the Hamiltonian.

[8pts] c. Obtain the differential eqution of motion.
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4. A sphere of radius R1 is constrained to roll without slipping on the lower half of the
inner surface of a stationary hollow cylinder of radius R2. The motion is confined to a
plane perpendicular to the axis of the cylinder.

[4pts] a. Determine the moment of inertia of the sphere.

[2pts] b. What generalized coordinate may be used to describe the motion?

[6pts] c. Determine the Lagrangian function.

[3pts] d. Determine the equation of the constraint.

[5pts] e. Find the equations of motion.

[5pts] f. Find the Frequency of small oscillations.
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5. A block of mass m slides down a frictionless incline as in the figure below. The block
is released at height h above the bottom of the loop (CAB is an arc of a circle of radius
R).

R

A

BC

h

m
y

x
45◦

[7pts] a. Find the force of the inclined track on the block at the bottom (point A).

[7pts] b. Find the force of the track on the block at point B.

[4pts] c. How far away from point A does the block land on level ground (the x axis)?

[7pts] d. Sketch the potential energy U(x) of the block (to the point B). Indicate the total
energy on the sketch.
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6. A uniform rigid rod of length ` and mass m is supported at its ends by identical springs
with spring constant k. The rod is set in motion by depressing one end of the rod by a
small distance a and then releasing it from rest. The motion is confined to the vertical
plane containing the rod.

m

k k

`

[4pts] a. Calculate the moment of inertia for the rod about an axis perpendicular to the bar
and passing through the center of mass.

[7pts] b. Set up the equations of motion for the oscillating rod.

[7pts] c. Calculate the normal frequencies of oscillation of this system.

[7pts] d. Find the corresponding normal modes and sketch them.
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1. A particle of charge q and mass m enters, at constant speed v0, a cyclotron with a
homogeneous magnetic field ~B, perpendicular to the direction of motion of the particle.

[5pts] a. Determine the radius and frequency of the circular orbit which the particle will assume
within the cyclotron.

[5pts] b. Determine the (non-relativistic) rate of radiative energy loss per unit time (the Larmor
formula: up to the numerical factor 2

3 , it can be determined on dimensional and
invariance grounds).

Generalize now the Larmor formula to the relativistic case as follows.

[5pts] c. By transforming from the instantaneous rest frame to the lab frame, prove that the
rate of change of energy is a Lorentz invariant.

[5pts] d. As necessary, replace the factors in the Larmor formula with corresponding Lorentz
invariants.

[5pts] e. Find the relativistic energy loss per (circular) revolution and express this in terms of
the original variables and constants of nature.
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2. A grounded conductor has the shape of an infinite horizontal plane, with a hemispheri-
cal bulge of radius R (see the figure below). A point-charge q is placed at a distance h > R

above the center of the hemisphere.

q

R

h

[12pts] a. Using the method of images, determine the total electrostatic potential.

[7pts] b. Determine the electrostatic force on the original charge.

[6pts] c. Determine the lowest non-zero term in the multipole expansion of the electrostatic
potential.
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[4pts] 3. a. Write down the Maxwell’s equations, in their integral form, for the fields ~E and ~B.

[6pts] b. Use the appropriate Maxwell’s equation to find the ~B field of a static current I in an
infinite, straight wire with round cross-section of radius a. Find ~B both inside and
outside the wire. Express ~B in terms of the unit vector(s) of the coordinate system
you choose to solve the problem.

[3pts] c. Make a sketch depicting the flux density variation with the (perpendicular) distance
from the axis of the wire.

[6pts] d. Find the vector magnetic potential ~A in the plane bisecting a straight piece of a thin
wire of finite length 2L in free space, carrying a steady current I.

[6pts] e. Find ~B from ~A, using the results from part d. Show that the expression for ~B reduces
(in a suitable limit) to the results obtained, in part b., for ~B outside the infinitely
long wire.
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4. Two long coaxial conducting cylindrical shells, with vertical axis of symmetry and
of radii a and b are lowered vertically into a liquid dielectric. A potential difference V is
maintained between the two shells.

[5pts] a. Determine the electrostatic field between the two cylinders in vacuum, i.e., before the
immersion into the dilelectric.

[5pts] b. Find the electrostatic energy Uvac. of the system (still in vacuum).

[7pts] c. If the dielectric liquid rises a height h within the space between the two shells, find
the electrostatic energy Uliq. in the region occupied by the liquid.

[8pts] d. From the excess electrostatic energy which lifts the liquid against gravity, show that
the electric susceptibility of the liquid is

χ
e =

ε− 1
4π

=
(b2 − a2)ρ g h ln

(
b
a

)
V 2

,

where ρ is the density of the liquid and g the gravitational acceleration. For air, ε = 1,
χ
e = 0.
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5. A plane electromagnetic wave of frequency ω and wavenumber k propagates in the
positive z direction. For z < 0, the medium is air and the conductivity is σa = 0. For
z > 0, the medium is a lossy dielectric, with dielectric constant κ and σd > 0. Assume
that both air and dielectric are nonmagnetic, and that ~E, ~B are in the (x, y)-plane.

[10pts] a. Show that the dispersion relation (relation between k and ω) in the lossy medium is

k2 =
ω2

c2
(
κ+ i

4ωσd
ω

)
.

[5pts] b. Find the values of η and ξ if k is written as

k =
ω

c

(
η + iξ

)
.

[5pts] c. Find the limiting value of k for a very poor conductor (σd ¿ κω), and for a very good
conductor (σd À κω).

[5pts] d. Find the e−1 penetration depth δ (“skin depth”), for the plane wave power in the case
σd À κω.
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6. A resistor of length L, cross-section area A and conductivity σ is placed in an electric
field which causes an electric current to flow uniformly along the length of the resistor.

[2pts] a. Calculate the resistance of the resistor.

[7pts] b. A small defect is introduced in the middle of the body of the resistor, having a small
length b, a small uniform cross-section a and conductivity σd. Calculate the effective
total resistance.

Approximate now the defect by a small ball of radius b within an infinitely big resistor
(L,A→∞), and assume the current density to remain uniform far away from the defect.

[7pts] c. List carefully all the boundary conditions on the electric field.

[9pts] d. Apply the boundary conditions to calculate the electric field and current within the
defect.

Hint: You may use the azimuthal symmetry to write down a general expression for the potential

in the form of a series, and then use the boundary conditions to determine the coefficients.

12
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1. An operator Q satisfies the relations[
[Q, ~J2 ] , ~J2

]
= 1

2

(
Q~J2 + ~J2Q

)
+ 3

16Q , [Q, Jz ] = mqQ ,

where ~J is the usual (total) angular momentum (vector) operator and Jz the component
in the z direction.

[6pts] a. For the matrix element 〈j′,m′|Q |j,m〉 to be non-zero, use the first relation to deter-
mine the allowed values 4j = j′ − j.

[6pts] b. For the matrix element 〈j′,m′|Q |j,m〉 to be non-zero, use the second relation to
determine the allowed values 4m = m′ −m in terms of mq.

[3pts] c. Given your results for a. and b., what are the two possible values for mq?

[5pts] d. Calculate 〈j′,m′| [Q, ~J2 ] |j,m〉 in terms of 〈j′,m′|Q |j,m〉, j and 4j.

[5pts] e. Writing Q and Q̄ for the two operators corresponding to the two possible values of
mq, prove that QQ̄ and Q̄Q commute with Jz.

Hint: “Sandwich” the given relations between 〈j′,m′| and |j,m〉.
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[6pts] 2. a. Calculate the energy levels for a particle of mass m in a one dimensional square well
of width 2a and of infinite depth:

V (x) =
{

+∞ for |x| > a,
0 for |x| < a.

[7pts] b. Find expressions for the normalized eigenfunctions for the energy levels calculated in
part a. Sketch the eigenfunction for the second excited state.

[5pts] c. Suppose we now make a stepped potential well given by

V (x) =


+∞ for |x| > a,
0 for a

3 < |x| < a,
+δ for |x| < a

3 .

Use first order perturbation theory to find out the lowest energy level for this potential,
assuming that δ is small compared to the energy of the lowest level.

[5pts] d. Find the wave function (up to first order perturbation theory) for the lowest energy
level calculated in part c.

[2pts] e. Compare this perturbed wave function with the corresponding unperturbed wave func-
tion for infinite square well by means of a sketch.
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3. Pion-nucleon scattering at low energies can be qualitatively described by an effective
interaction potential of the form

V =
g2

4π
e−r/ρ

r
~Iπ · ~IN ,

where g and ρ are the interaction constant and the effective range (constant), and r is the
pion-nucleon distance. Defining a total isospin, ~I def= ~Iπ + ~IN , scattering processes can be
classified by I(I + 1), the eigenvalues of ~I2.

[5pts] a. For the differential cross-section, in the usual approximation dσ
dΩ = |f(θ)|2, specify the

scattering amplitude in the Born approximation, for the above potential. (Up to the
numerical factor 1

2π , the constant coefficients can be determined by dimensional and
general arguments.)

[5pts] b. Calculate the ratio of (total) cross-sections σ 3
2

: σ 1
2
, where σI is the cross-section for

a scattering in a state of total isospin I.

[5pts] c. Calculate the spatial (isospin-independent) factors in the scattering amplitude for the
above potential.

[5pts] d. Calculate the isospin factor in the scattering amplitude for the scattering processes
π++p→ π++p, π−+p→ π−+p and π−+p→ π0+n.

[5pts] e. Calculate the total cross-sections for the three scattering processes in d.

Know:
∣∣π+ p

〉
=
∣∣ 3

2
, 3

2

〉
,
∣∣π− p〉 =

√
1
3

∣∣ 3
2
,− 1

2

〉
−
√

2
3

∣∣ 1
2
,− 1

2

〉
,
∣∣π0 n

〉
=
√

2
3

∣∣ 3
2
,− 1

2

〉
+
√

1
3

∣∣ 1
2
,− 1

2

〉
;

also:
∣∣π±〉 = |1,±1〉,

∣∣π0
〉

= |1, 0〉, |p〉 =
∣∣ 1

2
, 1

2

〉
and |n〉 =

∣∣ 1
2
,− 1

2

〉
.
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4. Consider a general 1-dimensional problem: a non-relativistic quantum particle moving
along x, in an arbitrary potential V (x).

[3pts] a. Write down the Hamiltonian and state the canonical commutation relation, [x, p] =?

[4pts] b. Evaluate [H,x] and [x, [H,x]].

[3pts] c. Calculate the expectation value of
[
x, [H,x]

]
in the ground state, ψ0.

[5pts] d. By expanding the double commutator and inserting complete sets of intermediate
states, obtain the Thomas-Reiche-Kuhn sum rule:

∞∑
n=0

2m
h̄2 (En − E0)

∣∣〈n|x|0〉∣∣2 = 1 .

[5pts] e. By expanding the triple commutator [x, [x, [H,x]]] and inserting complete sets of in-
termediate states prove:

∞∑
k,n=0

(Ek − En)〈0|x|k〉〈k|x|n〉〈n|x|0〉 = 0 .

[5pts] f. For a 3-dimensional system with coordinates x1, x2, x3, derive the generalization:

∞∑
k,l,n=0

2m
h̄2 (Ek,l,n − E0,0,0)<e

{
〈0, 0, 0|xi|k, l, n〉〈k, l, n|xj |0, 0, 0〉

}
= δij ,

where <e(z) denotes the real part of z.

(Ehrenfest’s theorem relates the first few results to the Hamilton-Heisenberg equations of motion.)
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5. Consider a nonrelativistic quantum particle moving in a 1-dimensional box with
impenetrable walls placed at x = 0 and x = L.

[7pts] a. Write down the Schrödinger equation, find the complete set of normalized stationary
states and the corresponding energy eigenvalues.

[5pts] b. Assume now that the wall at x = L is very slowly (so that the quantum state of the
particle adapts continuously) moved out to x = 2L. Determine the new enerly levels.

[7pts] c. Assume now that the particle is in the ground state when the wall at x = L is
instantaneously moved to x = 2L. Calculate the probability that the particle is in the
ground state of the stretched system.

[6pts] d. Finally, consider the original particle in the original box, but with a perturbation
H ′ = Axe−(t/τ)2

. If the particle was in the nth (unperturbed) state at time t = −∞,
find the probability that it will be in another, kth state at t = +∞.

You may find the integrals
∫ π

0
dφ sin(kφ)φ sin(nφ) = (π

2
)2δk,n − [1−δk,n] 2kn

(k2−n2)2
[1 − (−1)k+n],∫ π

0
dφ sin(kφ) sin(nφ) = π

2
δk,n and

∫ +∞
−∞ dze−z

2
=
√
π useful.
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6. A particle has the wave-function:

ψ(r, θ, φ) =

√
5

16π
f(r) sin2 θ

(
1 +
√

14 cos θ
)

cos 2φ ,

where f(r) is a normalized radial function.

[10pts] a. Express the angular part of this wave-function as a superposition of the spherical
harmonics Y m` (θ, φ).

[5pts] b. Calculate the probabilities that a measurement of ~L2 and Lz will yield the values in
the table:

Operator Measurements and Probabilities

~L2 : 2 6 12

Prob. =

Lz : −3 −2 −1 0 +1 +2 +3

Prob. =

[5pts] c. Calculate the expectation values 〈ψ|~L2|ψ〉 and 〈ψ|Lz|ψ〉.

[5pts] d. Calculate the rms uncertainties in ~L2 and Lz.

Some spherical harmonics:

Y 0
0 =

√
1

4π
, Y 0

1 =
√

3
4π

cos θ , Y 0
2 =

√
5

16π
(3 cos2 θ − 1) , Y 0

3 =
√

7
16π

(5 cos3 θ − 3 cos θ) ,

Y 1
1 = −

√
3

8π
sin θ eiφ , Y 1

2 = −
√

15
8π

sin θ cos θ eiφ , Y 1
3 = −

√
21

64π
(5 cos2 θ − 1) sin θ eiφ ,

Y 2
2 =

√
15

32π
sin2 θ e2iφ , Y 2

3 =
√

105
32π

sin2 θ cos θ e2iφ , Y 3
3 = −

√
35

64π
sin3 θ e3iφ .
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1. Consider a system of N À 1 non-interacting particles in which the energy of each
particle can assume two and only two disticnt values: 0 and E (E > 0). Denote by n0 and
n1 the occupation numbers of the energy levels o and E, respectively. Let the fixed total
energy of the system be U .

[3pts] a. Write down the total number of available states Ω.

[6pts] b. Use Stirling’s approximation to obtain the entropy of the system S = S(N,n0, n1).

[2pts] c. Write down expressions for the total number N of particles and total energy U of the
system.

[7pts] d. For a constant number of particles, determine the temperature T = T (U,E,N).

[7pts] e. For what range of values of n0 is T < 0?
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2. Consider a heteronuclear diatomic molecule with moment of inertia I and undergoing
only rotational motion.

[2pts] a. Remembering that the rotation about the axis joining the two atoms is irrelevant, de-
termine the total number of rotational degrees of freedom that the molecule possesses.

[3pts] b. Use the equipartition theorem to find the classical average internal energy 〈E〉. What
is the specific heat C(T ) of the molecule at temperature T according to classical
statistical mechanics?

[4pts] c. In quantum mechanics, the molecule has energy levels Ej = h̄2

2I j(j + 1), j = 0, 1, 2, . . .
Each j-level is (2j + 1)-fold degenerate. Use quantum statistical mechanics to write
down expressions for the partition function Z and the average energy 〈E〉 of the system
as a function of temperature T .

[8pts] d. By simplifying the (defining) expressions in c., show that for high temperatures

〈E〉 ≈ 3E1 e
−E1
kT , and C(T ) ≈ 3E 2

1

kT 2
e−

E1
kT .

In what range of temperatures is this result valid?

[8pts] e. By simplifying the (defining) expressions in c., show that for low temperatures

〈E〉 ≈ kT , and C(T ) ≈ k .

In what range of temperatures is this result valid?
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3. A partition initially divides a chamber of total volume V0 which is otherwise surrounded
by insulating walls. On one side of the partition are N molecules of a monoatomic ideal
gas of atomic number A and at absolute temperature T and volume V . The other side of
the chamber is in vacuum. The partition is then ruptured, permitting the gas to expand
freely throughout the chamber.

[7pts] a. Find the final temperature Tf , pressure Pf , and entropy change 4S of the gas.

[4pts] b. What is the probability that all the molecules of the gas be found by chance within
the initial volume V at some time long after the partition is ruptured?

[7pts] c. Suppose instead that the gas expands from the initial volume V to the final volume V0

by pushing slowly and reversibly on the partition (which now acts as a piston) rather
than through free expansion into vacuum. What would now be the final temperature
Tf , final pressure Pf , and the entropy change 4S of the gas?

[7pts] d. Show that the work done is given by

W =
PV − PfV0

γ − 1
,

where γ is the ratio of the heat capacities of the gas at constant pressure and at
constant volume.

21



Howard University Physics Ph.D. Qualifier Statistical Mechanics, 8/23/96

4. Consider a non-relativistic quantum gas composed of completely ionized helium. To a
first approximation, assume that this is a white dwarf star such as Sirius B. The number,
N , of helium atoms can be estimated by using its estimated mass, M = 2.09×1030 kg, and
radius R = 5.57×103 km. Since there are 4 nucleons per helium atom, neglecting the mass
of the electrons, we get N = 1.25×1057 atoms (mp ≈ mn ≈ m = 1.67×10−27 kg).

[3pts] a. Starting with the Fermi-Dirac distribution function, obtain an expression of the Fermi
energy at T=0 for an ideal gas of electrons and evaluate it for the conditions of Sirius B.

[2pts] b. Calculate the Fermi temperature for Sirius B. Is this larger than observed temperature
of 2×107 K (implying that the electron gas is degenerate)?

[5pts] c. Obtain an expression for the internal energy, Ue, of the electron gas at T=0 K. The
total internal energy is Ue + Ug where Ug is the gravitational internal energy of the
He nuclei, Ug = − 3

5N
2(Gm2/R).

[5pts] d. Find the radius which minimizes the total internal energy of the star. Calculate the
radius of Sirius B and compare with the observed radius R = 5.57×103 km.

[5pts] e. As the helium is burned, the star begins to collapse, the electron density rises and the
Fermi energy increases until it exceeds the electron mass. At this point you must use
relativistic mechanics to describe electrons. Assuming extreme relativistic conditions,
the energy and momentum are connected by the speed of light, E = cp. Recalculate
the Fermi energy for this case. Use the fact that the mean energy of the electron gas
is, approximately, the mean momentum times c, to obtain a new equation for the free
energy of the star.

[5pts] f. From part d., calculate the number of helium nuclei at which the gravitational energy
equals the relativistic electron energy. This is the critical number. Show that the
critical mass of a star is 3.4×1030 kg.

(The electron mass is me = 9.108×10−31 kg; h̄ = 1.055×10−34 Js; G = 6.67×10−11 Nm2/kg2.)
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5. Consider an ideal monoatomic gas. The system is a volume V of gas surrounded by
a much larger volume of gas which serves as a reservoir with constant temperature T and
chemical potential µ. The partition function for a single gas atom is given by

Z = V
(2πmkT

h2

) 3
2
.

[7pts] a. Calculate the grand partition function and the grand potential for the system.

[7pts] b. Find the average number of particles in the volume V , the entropy, and the pressure
of the gas.

[4pts] c. Obtain the equation of state of the system.

[7pts] d. Suppose your system consists of proton-electron plasma. Assume this system may be
found in three possible states. In the first state the hydrogen is ionized (H+) and has
energy chosen as zero. In the second state, the atom contains one electron (H) and
has an energy ε1. In the third state, the atom contains two electrons (H−) and has
an energy ε2. The atom may exchange electrons with the surrounding atoms, but the
hydrogen as a whole is neutral.

From the grand partition function of this system, show that µ = 1
2ε2 so that the

gas is neutral, that is, 〈N〉 = 1.
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6. A solid contains N mutually noninteracting nuclei of spin 1. Each nucleus can therefore
be in any of three quantum states labeled by the quantum number m, where m = 0,±1.
Because of electric interactions with internal fields in the solid, a nucleus in state with
m = 1 or in the state with m = −1 has the same energy E > 0, while its energy in the
state with m = 0 is zero.

[6pts] a. Write down the partition function Z, and find the Helmholz free energy F for this
system.

[6pts] b. Obtain espressions for the entropy S of the N nuclei as a function of temperature T .

[6pts] c. Obtain and expression for the energy U , as a function of T .

[7pts] d. Derive an expression for the heat capacity C in the limit E ¿ kT .
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