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Work out the solutions to four problems,– at least one from each
group. Circle the numbers below to indicate your choice of problems.

2  3 4  51
Group A

6
Group CGroup B

1. Write in your code-letter here: .
2. Write your code-letter and a page number (in sequential order)
on the top right-hand corner of each submitted answer sheet.
3. Write only on one side of the answer sheets.
4. Start each problem on a new answer sheet.
5. Stack your answer sheets by problem and page number, and then
staple them (at the top left-hand corner) with this cover sheet on
the top.

Good Luck!
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Group A

1. Consider a projectile of mass m moving in a region where air resistance is a function of
velocity, given by �Fair = −b�v. The projectile starts from the origin, with the initial velocity
�v0 = v0xêx + v0z êz (see figure below).

[5pts] a. Use Newtonian mechanics and derive an expression for the x-component of the velocity
vector, �v(t).

[5pts] b. Determine the expression for the x-component of the position vector �r(t).

[5pts] c. Derive the expression for the z-component of the velocity, �v(t).

[5pts] d. Determine the expression for the z-component of the position vector �r(t).

[5pts] e. For large values of t, the projectile approaches a vertical asymptote (see figure), and
moves at a terminal velocity. Show that the vertical asymptote is given by the ex-
pression xt = mv0x/b and that the terminal velocity is given by �vt = −mg

b êz.

z

x
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2. Suppose that the solar system is immersed in a uniformly dense spherical cloud of weakly
interacting massive particles (WIMPs). Then, objects inside the solar system would
experience gravitational forces from both the Sun and the cloud of WIMPs, such that
Fr = −k r−2 − b r. Assume that the extra force due to WIMPs is very small, i.e., that
b� k r−3 for distances within the solar system.

[10pts] a. Find the frequency of radial oscillations for a nearly circular orbit.

[15pts] b. Describe the shapes of the orbits when r is large enough, so that Fr ≈ −b r, i.e., when
the Sun’s gravitational force is negligible as compared to the one dues to WIMPs.
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Group A

3. Consider a 2-dimensional harmonic oscillator in two dimensions, with generalized coordi-
nates qσ, σ = 1, 2 and two different spring constants, k1, k2.

[2pts] a. Write down the expression for the Hamiltonian of the system, assuming that the forces
involved are conservative.

[4pts] b. What is the Hamilton-Jacobi equation for the Hamilton’s characteristic function
W (q1, q2)?

[5pts] c. Assuming that W (q1, q2) = W1(q1)+W2(q2), use separation of variables to obtain sep-
arate differential equations for W1 and W2, respectively. (Define separation constants
α1, α2 so that the total energy is α = α1 + α2.)

[5pts] d. Obtain the canonical momenta pσ, σ = 1, 2.

[4pts] e. Introduce a new variable θ related to qσ by qσ =
√

2ασ

kσ
sin θ and obtain the action

integral Jσ.

[5pts] f. Determine the fundamental frequencies νσ, σ = 1, 2 of the independent modes of
motion of the 2-dimensional oscillator.
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Group B

4. Consider a rectangular conducting box of sizes a, b, c in the x, y, z direction, respectively.
All sides except the bottom one are grounded (held at zero potential) and the bottom one
is held at the potential Φ0 = const �= 0, and insulated from the rest.

[5pts] a. List all the boundary conditions which restrict the electrostatic potential, Φ(x, y, z).

[5pts] b. Calculate Φ(x, y, z) inside the box.

Let Φ1(x, y, z) = Φ(x, y, z; a, b, c,Φ0) denote the solution of part b. A charge q is now
placed in the center of the box, at x = a/2, y = b/2, z = c/2.

[10pts] c. Determine the resulting potential inside the box.

[5pts] e. Assume now that you have a conducting box as in parts a–b., with the same boundary
conditions, except that now the side in the x, z-plane is set at the potential Φ1. Express
the potential inside this box using V (x, y, z; a, b, c,Φ0), the solution of part b.

(Hint: in parts c. and d., you need not write the solution of part a. in detail.)

x

y

z
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b
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5. An electron is released, from being held at rest at a large (but finite) distance, R, from a
nucleus of charge Ze, so that it “falls” toward the nucleus.

[5pts] a. Calculate the angular distribution of the emitted radiation (Poynting vector).

[5pts] b. Calculate the polarization of the emitted radiation.

[8pts] c. Calculate the radiated power as a function of the separation between the electron and
the nucleus.

[7pts] d. Calculate the total energy radiated between distances r1 and r2 (with r2 < r1).

Assume that v � c at all times and neglect the radiative reaction force, so that the
(retarded) radiation field is �Erad = − |e|

c2

[
n̂×(n̂×�̇v)

r

]
at t′ = t− r

c and energy is conserved.
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Group C

6. The Carnot cycle consists of a sequence of four reversible processes, alternating between
isothermal and adiabatic ones. An ideal gas is usually taken as the working substance.
Suppose that a Carnot cycle is constructed instead using photon gas, for which we know
all the thermodynamic functions, such as U,F, S, P , are valid at all temperatures. It has
been established that the energy density of the photon gas is u = σT 4, where σ is the
Stefan-Boltzmann constant.

[5pts] a. Find the specific heat at constant volume and the entropy for the photon gas.

[5pts] b. Find the pressure of the photon gas, and show that it depends only on its temperature.

[4pts] c. Show that the equation of state for the photon gas is given by PV β = f(S), where
β = 4/3 and F (S) is a function of entropy only.

[3pts] d. Sketch the Carnot cycle for the photon gas in the P -V plane.

[3pts] e. By considering heat exchange in the processes, calculate the Carnot efficiency and
show that the photon gas engine yields the same efficiency as the conventional ideal
gas engine.

[5pts] f. By calculating the work done for each of the four processes, determine the total work
done per cycle for the photon gas engine, and show that it equals the net heat absorbed
per cycle.
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Work four problems, at least one from each group. Circle the num-
bers below to indicate your chosen problems.

1  2 3  4 5  6
Group A Group B Group C

1. Write in your code-letter here: .
2. Place the code-letter and a page number on the top right-hand
corner of each submitted answer sheet.
3. Write only on one side of the answer sheets.
4. Start each problem on a new answer sheet.
5. Stack your answer sheets by problem and page number, and then
staple them (at the top left-hand corner) with this cover sheet on
the top.

Good Luck!
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Group A

1. Consider the action of infinitesimal rotations and Lorentz boosts, (x, y, z, t) → (x′, y′, z′, t′),
on a scalar function f(x, y, z, t). A rotation about the z-axis by an infinitesimal angle, θz,
induces

x′ ≈ x− θz y , y′ ≈ y + θz x , z′ = z , and t′ = t .

Then, f(x′, y′, z′, t′) − f(x, y, z, t) = θz(x ∂
∂y − y ∂

∂x )f(x, y, z, t) = i
2θz Ĵz f(x, y, z, t) defines

the generator of z-rotations, Ĵz = −2i(x ∂
∂y − y ∂

∂x ).

[5pts] a. In a similar fashion, write down the effect of a Lorentz boost in the z-direction by
an infinitesimal velocity, vz, on Cartesian coordinates, and calculate the generator of
z-boosts, L̂z, defined by f(x′, y′, z′, t′) − f(x, y, z, t) = i

2vz L̂z f(x, y, z, t).

[6pts] b. Obtaining Ĵx, Ĵy from Ĵz by cyclic permutations, calculate [Ĵi, Ĵj ] for i, j = x, y, z.

[7pts] c. Obtaining L̂x, L̂y from L̂z by cyclic permutations, calculate [L̂i, L̂j ] for i, j = x, y, z.

[7pts] d. Finish obtaining the Lorentz algebra by calculating [Ĵi, L̂j ] for i, j = x, y, z.

2. Consider the decay, A → B + C, of a particle with rest mass mA into two particles with
rest masses mB and mC .

[6pts] a. If A is at rest in the lab frame before the decay, show that the lab frame total energy
of the particle B is EB = 1

2mA
(m2

A +m2
B −m2

C).

[7pts] b. If A decays while moving at a constant velocity with respect to the lab, find the
relation between the total energies, EA, EB , and the angle, θAB , between the direction
of motion of A before the decay and that of B after the decay.

[7pts] c. An atom of rest mass M decays into a state of rest energy M−δ by emitting a photon
of energy hν. Show that hν < δ.

[3pts] d. In the Mössbauer effect, the recoil is absorbed by a macroscopic piece of material.
Show that this implies that now hν ≈ δ.
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Group B

3. Consider a particle of charge q and mass m in constant crossed �E and �B fields:

�E = (0, 0, E) , �B = (0, B, 0) , �r = (x, y, z) .

[3pts] a. Determine the scalar and vector potentials, Φ, �A, for this field in a gauge where �A has
a single Cartesian component.

[5pts] b. Write the Schrödinger equation for this particle, in this gauge.

[7pts] c. Separate variables and reduce it to an effective 1-dimensional problem.

[3pts] d. Compare this to a linear harmonic oscillator and calculate the expectation value of �r.

[7pts] e. Calculate the expectation value of the velocity, �v, in any energy eigenstate, using
Ehrenfest’s theorem: d〈Q〉

dt = 〈∂Q
∂t 〉 − 1

ih̄ 〈[H,Q]〉.

4. A particle of mass m and electric charge q is constrained to move on a ring of radius R.

[5pts] a. Write down the Schrödinger equation for this particle, neglecting any radiation losses.
Determine its energy levels and their degeneracy, if any.

An infinitely long solenoid of radius a� R and (inside) magnetic flux Φ = π a2B is placed
along the axis of rotational symmetry of the ring.

[5pts] b. Determine the magnetic field, and the vector and scalar potentials outside the solenoid,
in the ‘radiation’ gauge (�∇· �A=0).

[5pts] c. Write down the Schrödinger equation for the particle orbiting the solenoid.

[5pts] d. Solve this equation: determine all energy levels and corresponding wavefunctions.

[5pts] e. Treating Φ as a small and tunable parameter, explain what happened to the degener-
acy of the energy levels observed in part a.
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Group C

5. A particle of mass m is trapped in an L×L square, but moves freely within 0 ≤ x ≤ L and
0 ≤ y ≤ L.

[5pts] a. Write down the Schrödinger equation and the boundary conditions for this particle.

[5pts] b. List the energy levels and the corresponding wavefunctions, and state the degeneracy
of the lowest four energy levels.

[10pts] c. Determine the effect of the perturbation H ′ = λδ(x−L
2 ) on the energies of the states

with unperturbed energy 5 π2h̄2

2mL2 .

[5pts] d. Derive a boundary (matching) condition for the wavefunction at x=L
2 , induced by the

perturbation, and specify the class of states which will not be affected by it.

6. Develop a variational principle from the Schrödinger equation

− h̄2

2m
�∇2ψn + V (�r)ψn = Enψn ,

where ψn is the wave-function of the stationary state with energy En, and V (�r) is a non-
negative real potential.

[5pts] a. Using that
∫

d3 �rψ∗
nψn′ = δn,n′ , obtain an integral expression for En, in terms of ψn,

�∇ψn, their conjugates and V (�r), but no higher derivatives. Show that En ≥ 0.

[7pts] b. Vary this integral expression for En with respect to a small change ψn → ψn + δψ,
and determine δEn as an integral expression quadratic in δψ and �∇ψn.

[10pts] c. Using the completeness of the set
{
ψn

}
, expand δψ =

∑
k ckψk and integrate the

expression for δEn to obtain δEn as a function of ck, c
∗
k, Ek and En.

[3pts] d. Which ψn (i.e., which En) can be determined by minimizing δEn?

Note: n, n′, k need not be integers or even discrete variables.
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