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Group A

1. Consider an ensemble of N classical, indistinguishable particles with one degree of freedom,

in thermal equilibrium with a large thermal reservoir at temperature T . The energy levels

of each particle are Ej = (4j + 3)E0, for j = 0, 1, 2.

[5pts] a. Using the appropriate statistics, state the equilibrium probability, Pj , of finding a

particle with energy Ej.

[7pts] b. Calculate the partition function, Z, for this system.

[6pts] c. Calculate the Helmholtz free energy, F , for this system.

[7pts] d. Calculate the internal energy, U , for this system.

2. In a particular model of thermal behavior of crystalline solids, each of the N atoms of the

solid behaves like three independent harmonic oscillators. These 3N harmonic oscillators

(which are on distinguishable sites) all have the same angular frequency of vibration, ω0,

and their possible energy levels are given as En = h̄ω0(n+ 1
2 ), where n = 0, 1, 2, · · ·

[6pts] a. Calculate the Helmholtz free energy F of this solid.

[7pts] b. Calculate the heat capacity, C, as a function of temperature, T . Determine the

general formula and, to leading order, calculate the low-temperature limit and the

high-temperature limit.

[6pts] c. Sketch a plot of C vs. T .

[6pts] d. Calculate the average value, n̄(T ), of n.
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Group B

3. A h0 = 2m tall man is bungee-jumping from a platform situated at a height h = 25m

above a river. One end of an elastic rope is attached to his foot and the other end is fixed

to the platform. He starts falling from rest, in a vertical position. The length and elastic

properties of the rope are chosen so that his speed will have been reduced to zero at the

instant when his head reaches the surface of the water. Ultimately, the jumper is hanging

from the rope, with his head 8m above the water. The rope is massless and has a spring

constant k. You may also assume that the man’s mass is evenly distributed along the

length of his body.

[9pts] a. Calculate the unstretched length of the rope, `0.

[7pts] b. Calculate the man’s maximum speed during the jump.

[9pts] c. Calculate the man’s maximum acceleration during the jump.

4. The mass, m, of a spring is uniformly distributed along its length, and it has a spring

constant k. A bead of mass M is hung at the end of the spring and then set into purely

vertical oscillation.

[8pts] a. Carefully ascertaining the motion of both the bead and the spring, determine the

kinetic energies of both parts.

[5pts] b. Determine the Lagrangian for this particular system.

[7pts] c. Derive the equation of motion for the bead.

[5pts] e. Calculate the period of oscillation of the bead.

(Hint: the period should be between 2π
√

M/k and 2π
√

(M +m)/k)
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Group C

5. The classical Hamiltonian for a particle of mass m and charge q in the presence of electric
and magnetic fields is H = 1

2m
(~p− q

c
~A)2 + qΦ.

[5pts] a. Determine the electric and magnetic vector fields, ~E and ~B, in terms of the quantities
given above.

[6pts] b. From the relations for ~E and ~B and Maxwell’s equations, show that the potentials, ~A
and Φ, satisfy the Lorentz condition, ~∇· ~A+ 1

c
∂Φ
∂t

= 0.

[8pts] c. If the potentials are subject to the gauge transformation, ~A→ ~A+~∇Λ and Φ → Φ−∂Λ
∂t

,
determine the condition on Λ for the Lorentz condition to remain unchanged, and
determine the induced gauge transformations of ~E, and ~B.

[7pts] d. Starting from the Lorentz force, derive its corresponding generalized potential, and
use this to derive the Lagrangian and then the above Hamiltonian.

6. A thin superconducting ring (of zero resistance, mass 50mg, radius r0 = 0.5 cm and induc-
tance L = 1.3×10−8 H) is held coaxially above a vertical, cylindrical magnetic rod. The
radius of the magnetic rod is much larger than that of the ring. While the ring is held at
rest, there is no current flowing through it. When it is released, it starts to fall downward,
keeping its axis collinear with that of the magnet. The magnetic field produced by the rod
is given by ~B = B0

(

βrr̂ + (1− αz)ẑ
)

, where B0 = 0.01T, α = 2m−1 and β = 32m−1.

[5pts] a. Calculate the total flux through the superconducting ring.

[5pts] b. Explain why the total flux through the ring must remain constant.

[4pts] c. Derive the equation of motion for the ring’s vertical position, z(t), and determine the
numerical values of the amplitude and frequency.

[3pts] d. Derive an expression for the total current flowing in the ring as a function of time.

[3pts] e. Describe the direction of the current flow in the ring as a function of time.

7. Two polar molecules, each with the electric dipole moment ~p1 and ~p2, respectively, are
separated by a distance r. The dipole moments are orthogonal to each other: ~p1 is vertical,
pointing upward and ~p2 is horizontal, pointing away from ~p1.

[8pts] a. Calculate the force (magnitude and direction) on ~p2 due to ~p1’s electrostatic field.

[8pts] a. Calculate the force (magnitude and direction) on ~p1 due to ~p2’s electrostatic field.

[9pts] a. Calculate the total torque (magnitude and direction) exerted on ~p2 with respect to
the center of ~p1.
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Group A

1. Use Newton’s second law of motion and Coulomb’s law to describe the Hydrogen atom,

assuming that its electron moves in a circular orbit of radius r centered at the proton.

[6pts] a. Calculate the kinetic and the potential energy of the electron-proton system.

[7pts] b. Express r in terms of the quantum number n using Bohr’s selection rule for the

angular momentum of the electron, and show that its total energy is En = − R

n2 ,

where R = mee4

2(4πε0h̄)2 and n = 1, 2, 3, · · · is the principal quantum number.

[7pts] c. For transitions between the ground state (n = 1) and the lowest five excited states

(1 < n ≤ 6), compute the wavelengths of the Hydrogen emission lines (Lyman series).

[5pts] d. Consider transitions between near states near the free electron limit (n � 1, while

4n = 1, 2, 3 and 4n � n), and show that the frequencies of the emitted/absorbed

photons approach the classical values, ωcl. = kΩn, where k = 1, 2, 3 and Ωn = 2R
n3h̄

(Bohr’s complementarity principle).

2. A free electron at rest, absorbs a λ = 0.071nm X-ray photon, incident along the x-axis.

[4pts] a. Show that the existence of this resulting (“excited”) electron (ẽ−) violates the strict

conservation of relativistic 4-momentum.

[5pts] b. Use the difference in the square of the magnitude of the momentum of ē− between the

value predicted by conservation of (relativistic) energy vs. conservation of momentum

to estimate the uncertainty in the momentum of ẽ−. From this, estimate a position

and time uncertainty for ẽ−.

[6pts] c. Within the time of part b., ẽ− emits a photon of wavelength λ′, at an angle θ with

respect to the x-axis; the electron scatters, in the direction opposite from the photon,

at an angle φ from the x-axis. Derive the Compton formula, relating 4λ def
= λ′−λ, θ

and fundamental constants.

[10pts] d. If the photon and the electron are known to have scattered at 90◦ from each other,

derive a relation between the photon’s scattering angle, θ, and the ratio λ′/λ, and the

relation between λ, θ and fundamental constants.

me = 9.109×10−31 kg, c = 3×108 m/s, h̄ = 1.055×10−34 Js.
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3. Consider the α-decay of a nucleus by describing tunneling through a spherically symmetric

barrier V (r), which is assumed to be very steep at the classical turning points, R� D.

[6pts] a. Write down the Schrödinger equation, simplify it by setting ` = 0 (for S-waves) and

ψ(r) = r−1u(r), and state the appropriate boundary conditions.

[7pts] b. Assuming that V (r) is approximately zero inside (0 < r < R) and outside (r > D) the

barrier, write down the expected general form of the wave-function in these regions as

appropriate for α-decay. Using a semiclassical (WKB) estimate for the decaying ψ(r)

inside the barrier, derive the estimate for the transmission coefficient in the standard

form, T = e−2γ , with γ =
∫ D

R
dr

√

2mα(V (r)− E)/h̄2.

[7pts] c. Realistically, the barrier is provided by the Coulomb repulsion between the twice

positively charged α-particle and the Z ′
def
= (Z−2)-charged daughter nucleus. Use

this to determine the barrier, V (r) for R < r < D, where R = const., D satisfies

V (D) = E, and then integrate γ.

[3pts] d. Expand the result for γ to second order in R
D
� 1, determine and state the dependence

of transmission coefficient on Z.

(Useful results:
∫ b

a
dx

√

b/x− 1 = b cos−1
√

a/b−
√

a(b− a), and cos−1(ε) ≈ 1
2π−ε− 1

6ε
3.)
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Group B

4. Consider an electron (of mass me) trapped but otherwise moving freely within a horizontal

L×(L/
√

3) rectangle such that x ∈ [0, L] and y ∈ [0, L/
√

3].

[4pts] a. Write down the Hamiltonian, the boundary conditions for this electron, the unnor-

malized wave-functions, ψnx,ny
(x, y), and their energies, Enx,ny

, for this electron.

[3pts] b. Calculate the normalization constants for the wave-functions.

[6pts] c. List the 10 states with energy less than 30 π2h̄2

2meL2 , and state their degeneracy.

[6pts] d. With the system in its ground state, the wall at y = L/
√

3 is suddenly moved to

y = L. Specify and sketch the wave-function of the system immediately after the

change. Calculate the probability that the system will be found in the new ground

state immediately after the change.

[6pts] e. Calculate the shift in the energy, to first order in perturbation theory, due to the

constant weak electric field ~E = E0êx, and state whether this removes any degeneracy.

Useful results: sin(a) sin(b) = 1
2

(

cos(a−b)− cos(a+b)
)

,
∫ π

0
dφ sin2(nφ)φ = π2

4 .

5. Consider a 3-dimensional harmonic oscillator, with the position and linear momentum

operators given in a Cartesian basis as ~̂r = êj x̂j and ~̂p = êj p̂j , respectively. The canonical

commutation relations (CCRs) may then be stated as [x̂j , p̂k] = ih̄δjk.

[5pts] a. By direct calculation, prove that [x̂j , L̂k] = ih̄εjklx̂l and [p̂j , L̂k] = ih̄εjklp̂l, for all

j, k = 1, 2, 3.

[5pts] b. By direct calculation, prove that r̂2, p̂2, ~̂r·~̂p, and ~̂p·~̂r all commute with ~̂L, and explain

why this must be true.

[10pts] c. Using that ~̂L×~̂p = êjεjklL̂kp̂l and the above results, show that [Ĥ, ~̂K0] = −2h̄~̂r, for

~̂K0
def
= 1

2

(

~̂L×~̂p+~̂p×~̂L
)

and Ĥ = 1
2m
p̂2 + 1

2mω
2r̂2.

[5pts] d. Determine the constants α, β in ~̂K = ~̂K0+α~̂r+β~̂p such that ~̂K is a conserved quantity.

(Hint: Working in Cartesian components, index notation and using only the CCRs will

simplify calculations a great deal.)
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Group C

6. Consider a two-level system with eigenstates |1〉 and |2〉 of the Hamiltonian, having energies

ε1 and ε2, respectively, where ε2 > ε1.

[6pts] a. If the system is in the state |ψ〉 = a |1〉+ b |2〉, write down the density matrix ρ.

Let the system be in thermal equilibrium at temperature T .

[7pts] b. Calculate the density matrix, ρ, as a function of T .

[5pts] c. Calculate the Helmholtz free energy, F , as a function of T .

[7pts] d. Calculate the entropy, S, as a function of T .

7. Consider the elastic scattering of a particle of mass m and incident wave-vector ~k from

a potential which is specified as a function of the wave-vector transfer, ~q
def
= (~k′−~k), by

t(~q)
def
= 〈~k′|V |~k〉 = −A(α + i)e−βq2

; here |~k〉 and |~k′〉 are the incident and the scattered

(asymptotic) plane wave states.

[5pts] a. Derive the relation |~q| = 2|~k| sin( θ
2 ), where θ is the scattering angle.

[7pts] b. Derive a relation between the scattering amplitude, f(θ) and t(~q).

[10pts] c. State the optical theorem and use it to calculate the total cross-section.

[3pts] d. Does the total cross-section equal the elastic cross-section for this problem? Explain.

Hint: you may use Fermi’s “golden rule” and the standard relation between f(θ) and dσ

dΩ
.
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