The Howard University Department of Physics and Astronomy

Master of Science Comprehensive and
 Doctor of Philosophy Qualifying Exam

Part 1: Classical Physics
August 25, 2004

Work out the solutions to four problems,- at least one from each group. Circle the numbers below to indicate your choice of problems.

$$
\left.\begin{array}{|cc|}
\hline 1 & 2 \\
\text { Group } A
\end{array}\right) \begin{array}{cc}
4 & 5 \\
\text { Group B }
\end{array} \begin{array}{cc}
6 & 7 \\
\text { Group C }
\end{array}
$$

1. Write in your code-letter here: SOlution.
2. Write your code-letter and a page number (in sequential order) on the top right-hand corner of each submitted answer sheet.
3. Write only on one side of the answer sheets.
4. Start each problem on a new answer sheet.
5. Stack your answer sheets by problem and page number, and then staple them (at the top left-hand corner) with this cover sheet on the top.

Good Luck! (And may you not need it.)

1. A bead of mass m, under no external force, is attached by a massless inextensible cord which is completely wound aroud a cylinder of radius R. This cylinder is placed within a concentric cylindical shell, of radius $3 R$. A radially directed kick sends the bead spiraling outward with initial velocity \vec{v}_{0}, unwinding the cord as shown:

[7pts] a. Using the length of the unwound piece of the cord, ℓ, as a generalized coordinate, write down the Lagrangian and determine the equation of motion.
[7pts] $\quad b$. Find the trajectory $\ell=\ell(t)$ of the bead.
[7pts] $\quad c$. Find the angular momentum of the bead about the axis of the cylinder and the kinetic energy after a time t.
[4pts] d. Find the time when the bead will hit the outer cylinder.
2. A particle of mass m moves under the influence of a potential $V(r)=K r^{4}$ where $K>0$.
[7pts] a. Calculate the force $\vec{F}(r)$ and make plots of both $|\vec{F}(r)|$ and $V(r)$.
[7pts] b. Make a plot of the effective potential and discuss the motion of the particle without solving the equations of motion, for the cases $E<0, E=0$, and $E>0$.
[5pts] c. Find the values of total energy E, the Lagrangian function L and the radius of a circular orbit.
[3pts] d. Calculate the period of this circular motion.
[3pts] e. Calculate the period of small radial oscillations, that is, the period of the motion when the particle is slightly disturbed from the circular orbit.
3. A ring with mass m_{1} slides over a uniform rod which has a mass m_{2} and length ℓ. The rod is pivoted at one end and hangs vertically. The ring is secured to the pivot by a massless spring with the spring constant k and unstretched length r_{0}, and is constrained to slide along the rod without friction. The rod and the ring are set into motion in a vertical plane. The position of the ring and the rod at time t is given by $r(t)$ and $\theta(t)$, as shown in the figure.

[12pts] a. Write the Lagrangian for the system.
[5pts] b. Obtain the Hamiltonian.
[8pts] c. Obtain the differential eqution of motion.
4. A grounded conductor has the shape of an infinite horizontal plane, with a hemispherical bulge of radius R (see the figure below). A point-charge q is placed at a distance $h>R$ above the center of the hemisphere.

[12pts] a. Using the method of images, determine the total electrostatic potential.
[7pts] $\quad b$. Determine the electrostatic force on the original charge.
[6pts] c. Determine the lowest non-zero term in the multipole expansion of the electrostatic potential.
5. A plane electromagnetic wave is incident on the planar interface between linear, isotropic and homogeneous dielectric media of (real) indices of refraction n_{1} and n_{2}, at an angle θ_{i} from the normal to the interface plane. Assume that the magnetic permeabilities of both dielectrics are $\mu_{1}, \mu_{2} \approx \mu_{0}$.
[5pts] a. If the incident electric field, \vec{E}_{i}, is parallel to the interface, give the equalities for continuity of both the electric and the magnetic field.
[8pts] b. Derive the ratio of the amplitudes of the reflected and incident electric fields, $r_{T M}=$ $\left|\vec{E}_{0 r}\right| /\left|\vec{E}_{0 i}\right|$, as a function of n_{1}, n_{2} and the incident and transmitted angles, θ_{i}, θ_{t}.
[6pts] c. In the case when the angle between the direction of the reflected and the transmitted waves is 90°, determine the numerical value of $r_{T M}$.
[6pts] d. In reflection from non-dielectric materials, many of the above assumptions no longer hold; in particular, consider now the case when $n_{i}=1$ and $n_{2}=n_{R}+i n_{I}$ is complex. Determine the ratio of the intensities of the reflected and the incident wave, and show that for Gallium ($n_{R}=3.7$ and $n_{I}=5.4$), $I_{r} / I_{i}=0.7$.
6. An ideal gas of particles, each of mass m, moving in only one dimension and at temperature T, is subject to an external force governed by the potential $V(x)=A x^{n}$, where $0 \leq x \leq \infty$, and $A, n>0$.
[12pts] a. Calculate the average potential energy per particle.
[7pts] $\quad b$. For $n=2$ (harmonic oscillator potential), calculate $\langle V\rangle$.
[6pts] c. Calculate the average potential energy per particle in a gas in a uniform gravitational field $(n=1)$.
7. The cycle of a highly idealized gasoline engine can be approximated by the so-called Otto cycle (see figure). Treat the working medium as an ideal gas, with $\gamma \stackrel{\text { def }}{=} C_{P} / C_{V}$.

[8pts] a. Obtain an expression for the efficiency, η, of this cycle in terms of the compressiion ratio $r \stackrel{\text { def }}{=} V_{i} / V_{f}$
[5pts] $\quad b$. Compute η for $\gamma=1.4$ and $r=10$.
[7pts] c. Obtain an expression for the work, W, done on the gas in the adiabatic compression process $1 \rightarrow 2$ in terms of the initial volume and pressure V_{i}, P_{i} and γ.
[5pts] d. Compute W for $V_{i}=2 \mathrm{~L}$ and $P_{i}=1 \mathrm{~atm}$.

The Howard University Department of Physics and Astronomy

Master of Science Comprehensive and
 Doctor of Philosophy Qualifying Exam

Part 2: Modern Physics
August 27, 2004

Work four problems, at least one from each group. Circle the numbers below to indicate your chosen problems.

$$
\left.\begin{array}{|cc|}
\hline 1 & 2
\end{array} \quad 3 \begin{array}{cc}
4 & 5 \\
\text { Group A }
\end{array}\right) \begin{array}{cc}
6 & 7 \\
\text { Group B }
\end{array}
$$

1. Write in your code-letter here: Solution.
2. Place the code-letter and a page number on the top right-hand corner of each submitted answer sheet.
3. Write only on one side of the answer sheets.
4. Start each problem on a new answer sheet.
5. Stack your answer sheets by problem and page number, and then staple them (at the top left-hand corner) with this cover sheet on the top.
6. An electron is described by the wavefunction

$$
\psi(x)= \begin{cases}0 & \text { for } x<0 \\ C e^{-x / x_{0}}\left(1-e^{-x / x_{0}}\right) & \text { for } x>0\end{cases}
$$

where $x_{0}=1 \mathrm{~nm}$ and C is a constant.
[6pts] $\quad a$. Calculate the value of C that normalizes $\psi(x)$.
[6pts] b. Where is the electron most likely to be found? That is, calculate the value of x where the probability of finding the electron is the largest.
[8 pts$] \quad c$. Calculate the expectation value, $\langle x\rangle$, for this electron and compare your results with the most likely position. Comment on any differences.
[5pts] d. Calculate the indeterminacy, $\triangle x$.
2. Consider a relativistic particle of rest mass m, momentum p, and total energy E.
[8pts] $\quad a$. Show that $E^{2}=p^{2}+m^{2} c^{4}$.
[8pts] b. Show that the "length" of the energy-momentum four-vector of a particle is invariant with respect to all Lorentz transformations.
[9pts] c. A proton-proton collision can create a π^{0} meson as an additional particle in the final state, if there is sufficient energy. The observed reaction is $p+p \rightarrow p+p+\pi^{0}$. If the initial state consists of a proton of kinetic energy K colliding with a proton at rest, calculate the minimum value of K for which the reaction may occur.
3. Charges of $5 \mu \mathrm{C}$ are located at points A and C, as shown below.

[10pts] a. A bead of 15 g mass and $5 \mu \mathrm{C}$ charge is released from rest at point B; calculate its speed at point D.
[15pts] b. Redo this calculation for a bead of $40 \times 10^{-15} \mathrm{~g}$ mass; neglect radiative effects. (Remark: The distance between points A and C is immaterial for answering the questions!)
4. An operator Q satisfies the relations

$$
\left[\left[Q, \vec{J}^{2}\right], \vec{J}^{2}\right]=\frac{1}{2}\left(Q \vec{J}^{2}+\vec{J}^{2} Q\right)+\frac{3}{16} Q, \quad\left[Q, J_{z}\right]=m_{q} Q
$$

where \vec{J} is the usual (total) angular momentum (vector) operator and J_{z} the component in the z direction.
[6pts] a. For the matrix element $\left\langle j^{\prime}, m^{\prime}\right| Q|j, m\rangle$ to be non-zero, use the first relation to determine the allowed values $\triangle j=j^{\prime}-j$.
[6pts] b. For the matrix element $\left\langle j^{\prime}, m^{\prime}\right| Q|j, m\rangle$ to be non-zero, use the second relation to determine the allowed values $\Delta m=m^{\prime}-m$ in terms of m_{q}.
[3pts] c. Given your results for a. and b., what are the two possible values for m_{q} ?
[5pts] d. Calculate $\left\langle j^{\prime}, m^{\prime}\right|\left[Q, \vec{J}^{2}\right]|j, m\rangle$ in terms of $\left\langle j^{\prime}, m^{\prime}\right| Q|j, m\rangle, j$ and $\triangle j$.
[5pts] e. Writing Q and \bar{Q} for the two operators corresponding to the two possible values of m_{q}, prove that $Q \bar{Q}$ and $\bar{Q} Q$ commute with J_{z}.

Hint: "Sandwich" the given relations between $\left\langle j^{\prime}, m^{\prime}\right|$ and $|j, m\rangle$.
5. Consider a 2-dimensional harmonic oscillator, for which the Hamiltonian can be written as $H=\frac{1}{2 m}\left(p_{x}{ }^{2}+p_{y}^{2}\right)+\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right)$.
[4pts] a. Write down energies of the allowed states of this oscillator (in units of $\hbar \omega$) and specify their degeneracy.
[4pts] b. For a suitably small constant α, does a perturbation of the form $V=\alpha x$ change the degeneracy? Why (why not)?
[4pts] c. For a suitably small constant β, does a perturbation of the form $V=\beta x^{2}$ change the degeneracy? Why (why not)?
[4pts] d. For a suitably small constant γ, does a perturbation of the form $V=\gamma x^{4}$ change the degeneracy? Why (why not)?
[4pts] e. Use perturbation theory to calculate the first order shift in the ground state energy, caused by a small perturbation $V=\gamma x^{4}$.
[5pts] f. For all of the above perturbations and for any arbitrary collection of states, is it necessary to use degenerate perturbation theory? Why (why not)?
6. Consider a particle of mass M constrained to move on a circle of radius a in the x, y-plane.
[5pts] a. Write down the Schrödinger equation in terms of the usual cylindrical-polar angle ϕ.
[5pts] b. Determine the complete set of states, the corresponding energy spectrum and orthonormalize the stationary states.
[5pts] c. Assume now that the particle has charge q and is placed in a small electric field $\vec{E}=\mathcal{E} \hat{\mathrm{e}}_{x}$. Determine the first non-zero perturbative correction to the energy levels.
[5pts] d. Instead of the electric field, apply a small magnetic field $\vec{B}=\mathcal{B} \hat{\mathrm{e}}_{z}$. Determine the first non-zero perturbative correction to the energy levels.
[5pts] e. What is the degeneracy of the unperturbed system (the one with $\mathcal{E}=0=\mathcal{B}$)? And with $\mathcal{E} \neq 0=\mathcal{B}$? And with $\mathcal{E}=0 \neq \mathcal{B}$?
7. Consider an $L \times L \times L$ cube of metal, wherein the electrons may be treated as if comprised of an ideal gas confined in the cube.
[5pts] a. Write down the wave-function for the electron states and the expression for the energy levels, $E_{\vec{n}}$, where $\vec{n}=\left(n_{x}, n_{y}, n_{z}\right)$.
[5pts] $\quad b$. Let $n=|\vec{n}|$. Determine the number of state between n and $n+\mathrm{d} n$. Using the relation between $E_{\vec{n}}$ and \vec{n}, and $\mathrm{d} E_{\vec{n}}$ and $\mathrm{d} n$, eliminate n and $\mathrm{d} n$ and obtain the number of states, $\mathrm{d} N$, within $[E, E+\mathrm{d} E]$.
[5pts] c. Determine the Fermi energy, that is, the energy of the highest occupied state.
[5pts] d. Determine the average kinetic energy of these electrons.
[5pts] e. Determine the pressure of this ideal gas of electrons.

