The Howard University Department of Physics and Astronomy

Master of Science Comprehensive and Doctor of Philosophy Qualifying Exam

Part 1: Classical Physics August 28, 2007

Work *four* problems, at least one from each group. Circle the numbers below to indicate your chosen problems.

1	2 3	4 5 6
Group A	Group B	Group C

- 1. Write in your code letter here:
- 2. Write your code letter and a page number (in sequential order) on the *top right-hand* corner of each submitted answer sheet.
- 3. Write only on one side of each answer sheet.
- 4. Start each problem on a new answer sheet.
- 5. Stack your answer sheets by problem and page number, and then staple them (at the top *left-hand corner*) with this cover sheet on the top.

- Write down Maxwell's equations for a medium with dielectric function ϵ , permeability μ , and conductivity σ .
- [5pts] a. Show that there is a plane wave solution with frequency ω , and obtain an expression for the complex propagation vector \vec{k} .
- [5pts] b. Obtain an expression for the the decay constant (skin depth) of the plane wave if this medium is a good conductor at the plane wave frequency ($\sigma \ge \omega \epsilon / 4\pi$).
- [5pts] c. A simple model for the conductivity of this medium can be obtained by solving the equation of motion for electrons (mass m, charge e, velocity \vec{v} , collision frequency γ) in a field \vec{E}_0 , in this medium:

$$m\frac{d\vec{v}}{dt} + mg\vec{v} = e\vec{E}_0e^{i\omega t}$$

and use $\vec{\jmath}=en\vec{v}=\sigma\vec{E}$, where n is the electron density. Using this expression, calculate the skin depth in a tenuous plasma $(\gamma=0)$ in terms of $\omega_p^2=(4\pi ne^2)/m$.

[5pts] d. In the ionosphere (a tenuous plasma), an external static magnetic induction, \vec{B}_0 is present, and neglecting transverse fields, the magnetic field is in the z-direction. Consider the plane wave to be circularly polarized and propagating in the z-direction also, so that $E = E_0(\hat{e}_1 + i\hat{e}_2)$. The equation of motion for the electrons in the ionosphere becomes

$$m \frac{\mathrm{d}^2 \vec{x}}{\mathrm{d}t^2} \approx e \vec{E}_{\pm} e^{-i\omega t} + \frac{e}{c} \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \times \vec{B}_0$$
.

Solve this for the displacement \vec{x} and hence the polarization, to show that the index of refraction is different for left- and right-circularly polarized radiation.

[5pts] e. Find the frequency at which only one circular polarization component will propagate without attenuation, in terms of ω_p and $\omega_B = \frac{eB_0}{mc}$

- 2. A particle of mass m moves under the action of a force the potential of which is given by $V(r) = kr^4$ where k > 0.
 - a. Calculate the force f(r) and plot V(r) vs. r and f(r) vs. r. [5 pts]
 - b. Plot $V_{eff}(r)$ vs. r. Discuss the motion of the particle for energies: $E=V_0$, $E>V_0$ and $E< V_0$, where $V_0=V_{eff}$ (r_0) is the minimal value of V_{eff} (r_0) . (Recall: V_{eff} includes, in addition to V(r), also the "centrifugal potential" term.) [7 pts]
 - c. Find the values of the angular momentum l and energy E for the radius $r=r_0$ of a circular orbit. [6 pts]
 - d. Calculate the period T of circular motion with radius r₀. [7 pts]

Given are the Maxwell equations in Gaussian units:

$$\vec{\nabla}{\times}\vec{E} = -\frac{1}{c}\frac{\partial\vec{B}}{\partial t}\;, \qquad \vec{\nabla}{\cdot}\vec{D} = 0\;, \label{eq:equation:equation:equation}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$
, $\vec{\nabla} \times \vec{H} = \frac{4\pi}{c} \vec{J} + \frac{1}{c} \frac{\partial \vec{D}}{\partial t}$;

a vector identity $\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \nabla^2 \vec{A}$, and that $c = 3 \times 10^{10} \, \mathrm{cm/s}$.

It is desired to calculate the reflectivity, R, from a metal surface at normal incidence. Same values of ε and μ may be used for vacuum and metal. However, there is a large conductivity σ associated with the metal.

- [10pts] a. What are the wave equations for a plane wave of frequency ω in the vacuum and the metal? What are the solutions of these equations?
- [10pts] b. How do you match the boundary conditions at the metal surface?
- [5pts] c. How do you calculate R? For visible light, $\omega = 3 \times 10^{15} \, \mathrm{s}^{-1}$. Estimate R for copper for which $\sigma = 5 \times 10^{17} \mathrm{statohm^{-1}cm^{-1}} = 6 \times 10^{7} \mathrm{ohm^{-1}m^{-1}}$.

- 4. Consider a single (nonrelativistic) particle of mass m and charge q moving in an electromagnetic field.
 - a. Write down the Lagrangian for the system in Cartesian position coordinates. [5 pts]
 - b. Write down the Hamiltonian for the system [5 pts]
 - c. Write down the canonical momenta for the system [5pts]
 - d. Write down Hamilton's equations using the Hamiltonian obtained from the second step [5 pts]
 - e. Using Hamilton's equations, obtain an expression for the Lorentz force law. [5 pts]

- 5. Write down expressions for the following.
 - a. An expression for the symplectic condition for a canonical transformation if M is the symplectic matrix (or Jacobian matrix of the transformation).[10 pts]
 - b. Obtain the symplectic matrix for the following transformation [10 pts]

$$Q = q \cos a - p \sin a$$

$$P = q \sin a + p \cos a$$

c. Is the transformation of the previous step canonical? Explain. [5 pts]

- 6. Consider a one-dimensional harmonic oscillator of mass m and spring constant k.
 - a. Write the Hamiltonian in terms of the canonical coordinate q and the conjugate momentum p. [7 pts]
 - b. Using Poisson bracket $\{Q_i, P_j\} = \delta_{ij}$, find the condition necessary for a change of variables $(q, p) \rightarrow (Q, P)$ to be a canonical transformation. [6 pts]
 - c. Using the results from part b., determine the value of the constant C so that the equations

$$Q = C(p + im\omega q)$$
 and $P = C(p - im\omega q)$, $\omega = \sqrt{\frac{k}{m}}$,

define a canonical transformation. [5 pts]

d. Determine the generating function S(q,P) for the canonical transformation in part c. [7 pts]

The Howard University Department of Physics and Astronomy

Master of Science Comprehensive and Doctor of Philosophy Qualifying Exam

Part 2: *Modern Physics* August 30, 2007

Work *four* problems, at least one from each group. Circle the numbers below to indicate your chosen problems.

1	2 3	4 5 6
Group A	Group B	Group C

- 1. Write in your code letter here:
- 2. Write your code letter and a page number (in sequential order) on the *top right-hand* corner of each submitted answer sheet.
- 3. Write only on one side of each answer sheet.
- 4. Start each problem on a new answer sheet.
- 5. Stack your answer sheets by problem and page number, and then staple them (at the top *left-hand corner*) with this cover sheet on the top.

- 1. Consider a two level system with eigenstates $|1\rangle$ and $|2\rangle$ having, respectively, energies ϵ_1 and ϵ_2 , and $\epsilon_2 > \epsilon_1$.
 - a. If the system is in the state $|\psi\rangle = a|1\rangle + b|2\rangle$, what is the density matrix ρ ? [15 pts]
 - b. Let the system be in thermal equilibrium at temperature T. What is ρ ? What is F? What is S? [10 pts]

2. Consider a monatomic crystal consisting of N atoms. These may be situated in two kinds of positions:

0 0 0 a. Normal position, indicated by 0 b. Interstitial position, indicated by X Χ X 0 0 0 Suppose that there is an equal number (=N) of Χ Χ both kinds of position, but that the energy of an atom at an interstitial position is larger by an 0 0 0 amount \square than of an atom at a normal position.

At T=0 all atoms will therefore be in normal position. Show that, at a temperature T, the number n of atoms at interstitial sites is

$$n = Ne^{-\varepsilon/2kT}$$
 for n << N

Use the fact that the Helmholtz free energy is a minimum for equilibrium at constant volume and temperature

Consider the linear harmonic oscillator (LHO) with characteristic frequency ω . With \hat{x} and \hat{p} denoting its position and linear momentum operators, respectively, we define $\hat{a} := \sqrt{\frac{m\omega}{2\hbar}}(\hat{x} + \frac{i}{m\omega}\hat{p})$ and denote its Hermitian conjugate by \hat{a}^{\dagger} . Use the standard basis, $\mathcal{H} = \{|n\rangle, n = 0, 1, 2, \cdots\}$, where $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$ and $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$.

- a. Derive the commutation relation $[\hat{a}, \hat{a}^{\dagger}]$ from the canonical relation, $[\hat{x}, \hat{p}] = i\hbar$.
- b. Construct an eigenstate, $|z\rangle$, of the annihilation operator: $\hat{a}|z\rangle := z|z\rangle$ as a formal expansion $|z\rangle := \sum_n c_n |n\rangle$. From the defining condition of such a state, determine as many of the constants c_n as you can, in terms of the eigenvalue, z.
- c. Re-express your result as $|z\rangle = \hat{Z}_z |0\rangle$, determine the correctly normalized operator \hat{Z}_z , and all the values of the eigenvalue z permitted by normalizability of $|z\rangle$.
- d. Calculate $\hat{U}^{-1}(t)$ â $\hat{U}(t)$, where $\hat{U}(t) := e^{-i\frac{t}{\hbar}\hat{H}}$ is the evolution operator.
- e. Calculate $\hat{U}(t)|z\rangle$. Determine from this a physical interpretation of z, and of $|z\rangle$.

Be carefully with the limits on summations over the $|n\rangle$. You may need the Baker-Campbell-Hausdorff formulae, $e^Ae^B=e^Be^Ae^{[A,B]}$ and $e^Ae^B=e^{A+B-\frac{1}{2}[A,B]}$, both valid if [A,[A,B]]=0=[B,[A,B]], and the generally valid

$$e^{\alpha A} B e^{-\alpha A} = B + \sum_{k=1}^{\infty} \frac{\alpha^k}{k!} \left[\underbrace{A, \left[\cdots, \left[A \right], B \right] \cdots}_{k} \right].$$

4. The quantum states available to a given physical system are (i) a group of g_1 equally likely states with a common energy value \Box_1 and (ii) a group of g_2 equally likely states, with a common energy value \Box_2 . Show that the entropy of the system is given by

$$S = -k [p_1 \ln(p_1/g_1) + p_2 \ln(p_2/g_2)]$$

where p_1 and p_2 are, respectively, the probabilities of the system being in a state belonging to group 1 or to group 2: $p_1 + p_2 = 1$.

a. a. Assuming that the p's are given by a canonical distribution, show that

$$S = k \left[\ln g_1 + \ln \{1 + (g_2/g_1)e^{-x}\} + \frac{x}{1 + (g_1/g_2)e^{x}} \right]$$

where $x = (\Box_2 - \overline{\Box_1})/kT$, assumed positive. [10 pts]

- b. Verify the foregoing expression for S by deriving it from the partition function of the system. [10 pts]
- c. Check that as $T \square 0$, $S \square k$ ln g_1 . Interpret this result physically. [5 pts]

Consider a heteronuclear diatomic molecule with the moment of inertia I, which is constrained to rotate in a plane.

- a. Show that the energy levels are given by $E_j = \frac{\hbar^2}{2I} j(j+1)$.
- b. Determine the allowed values of j, and the degeneracy of the corresponding energy levels.
- c. Using quantum statistical mechanics, find expressions for the partition function Z and the average energy $\langle E \rangle$ of this system. (You need not evaluate these expressions.)
- d. By simplifying the expressions in part c., derive an expression for the specific heat, C(T), that is valid at very low temperatures. (Hint: Include in your calculation only the two lowest-energy states.)
- e. By simplifying the expressions in part c., derive an expression for the specific heat, C(T), that is valid at very high temperatures. (Hint: Approximate the discrete sum by an integral.)

Consider a particle of charge q and mass m in constant crossed \vec{E} and \vec{B} fields:

$$\vec{E} = (0,0,E) \; , \qquad \vec{B} = (0,B,0) \; , \qquad \vec{r} = (x,y,z) \; . \label{eq:energy}$$

- a. Determine the scalar and vector potentials, Φ, \vec{A} , for this field in a gauge where \vec{A} has a single Cartesian component.
- b. Write the Schrödinger equation for this particle, in this gauge.
- c. Separate variables and reduce it to an effective 1-dimensional problem.
- d. Compare this to a linear harmonic oscillator and calculate the expectation value of \vec{r} .
- e. Calculate the expectation value of the velocity, \vec{v} , in any energy eigenstate, using Ehrenfest's theorem: $\frac{\mathrm{d}\langle Q \rangle}{\mathrm{d}t} = \langle \frac{\partial Q}{\partial t} \rangle \frac{1}{i\hbar} \langle [H,Q] \rangle$.