HOWARD UNIVERSITY WASHINGTON, DC, 20059

DEPARTMENT OF PHYSICS AND ASTRONOMY (202)-806-6245 (Main Office) 2355 Sixth Str., NW (202)-806-5830 (FAX)

-Electromagnetism-

1. Find the Green's function for a rectangular cavity with grounded metal walls having edge lengths of a, b and c.

2. Consider a plane polarized electromagnetic wave, $\vec{E} = \vec{E}_I e^{i(\vec{k}\cdot\vec{x}-\omega t)}$, incident on the plane of interface between two different dielectric media. The media have permeability and permittivity μ_1, ϵ_1 and μ_2, ϵ_2 , respectively. (Also, $\rho = 0, \vec{j} = 0$ and $\sigma = 0$.)

For the case of the electric field \vec{E} perpendicular to the plane of incidence,

- a. state clearly the boundary conditions for $\vec{E},\vec{B}.$
- b. From these conditions, determine all relations between the wave vectors and so derive the well-known laws for relfection and refraction.
- c. Determine the relative amplitude of the refracted and reflected waves.

3. An infinite cylinder capacitor consists of two concentric cylinders centered about the z-axis. The radius of the inner cylinder is r_0 , and that of the outer one is r_1 . The voltage between the cylinders is V. The capacitor is spinning around the z-axis at an angular velocity of ω radians/sec. For each of the three regions (inside the inner sylinder, between the two cylinders and outisde the outer cylinder) find:

a. the electric field \vec{E} ;

- b. the magnetic field \vec{B} ;
- c. the vector potential \vec{A} .

4. The Earth is sometimes modeled as an ideal spherical conductor, embedded in an infinite medium of a weak conductor (the air). The conductivity σ and permittivity ϵ of the air are known. Assume that at the time t = 0, the Earth is charged with a charge of Q_0 Coulombs. The charge will leak into the atmosphere. Derive:

- a. The expression for the charge on the Earth as a function of time for a given Q_0 ;
- b. The Current density in the air as a function of time and position.