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— Quantum Mechanics —

Work four problems only. If you work on more than four
problems, you must identify which four are to be graded.

1. Consider two operators, Â and B̂ which satisfy:[
Â , B̂

]
= B̂ , B̂†B̂ = 1l− Â2 , Â |a〉 = a |a〉 .

a. Determine the hermiticity properties of Â and B̂.

b. Using the fact that |a = 0〉 is an eigenstate of Â, construct the other eigenstates of Â.

c. Suppose the eigenstates of Â form a complete set. Determine if eigenstates of B̂ can
be constructed, and if so, determine the spectrum of the eigenstates of B̂.
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2. Consider a 2-dimensional harmonic oscillator, for which the Hamiltonian can be written
as H = 1

2m (p 2
x + p 2

y ) + 1
2mω2(x2 + y2).

a. Write down energies of the allowed states of this oscillator (in units of h̄ω) and specify
their degeneracy.

b. For a suitable constant α, does a perturbation of the form V = αx change the degen-
eracy? Why (why not)?

c. For a suitable constant β, does a perturbation of the form V = βx2 change the
degeneracy? Why (why not)?

d. For a suitable constant γ, does a perturbation of the form V = γx4 change the
degeneracy? Why (why not)?

e. Use perturbation theory to calculate the first order shift in the ground state energy,
caused by a small perturbation V = γx4.

f. For all of the above perturbations and for any arbitrary collection of states, is it
necessary to use degenerate perturbation theory? Why (why not)?
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3. A particle of mass m moves in 3-dimensional space under the influence of the (“opaque
bubble”) potential of the form V (r) = −γ δ(r − a), for a, γ positive constants.

a. Describe the general form of the spectrum. For which values of the energy is the
spectrum discrete, and for which values is it continuous?

b. Write down the Schrödinger equation in spherical coordinates, and obtain the radial
equation for uE,`(r), assuming that the wave function can be written as Ψ(r, θ, φ) =
r−1 uE,`(r) Y m

` (θ, ϕ), where Y m
` (θ, ϕ) are the spherical harmonics.

c. Describe the S-wave solutions (`=?). Sketch their radial function uE,`(r), and specify
all the boundary/matching conditions.

d. From the boundary/matching conditions, find the transcendental equation which de-
termines the energy quantization (for the discrete part of the spectrum), for ` = 0.

e. Determine the “translucent” limit, i.e., the smallest value of γ for which there is
precisely one bound state. Find a lowest order estimate for the energy of this state.

(In spherical coordinates, ∇2Ψ = ∂2Ψ
∂r2 + 2

r
∂Ψ
∂r + 1

r2 sin θ
∂
∂θ

(
sin θ ∂Ψ

∂θ

)
+ 1

r2 sin2 θ
∂2Ψ
∂ϕ2 .)
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4. Examine the pionic decays of K0 governed by weak interactions. The dominant decays
are K0 → π+π− and K0 → π0π0. Total isospin is not conserved in these processes, but
changes either by 4I = + 1

2 or by 4I = − 1
2 .

a. Introducing appropriate creation and annihilation operators, write down the interac-
tion terms (ĤI) in the Hamiltonian corresponding to the given decay processes. Given
the basic particle data for K0 and π0, π± (given below), does ĤI commute with isospin

vector-operator ~̂I? Why (why not)?

b. Using the basic particle data (below), determine the possible values of the angular
momentum and isospin of each of the two-pion system into which the K0 decays.

c. Based only on the particle data below, estimate the ratio of cross-sections σ(K0→π+π−)
σ(K0→π0π0) .

d. If the charge-conjugation&parity (reflection) operator acts as CP
∣∣K0

〉
= |K0〉 and

obeys (CP)2 = 1l, find the ortho-normalized kaon (K) CP-eigenstates.

e. For |K±〉, such that CP|K±〉 = ± |K±〉, let Γ± denote the decay rate. What is the
fraction of K0’s in an initially pure K0-beam, as a function of proper time?

f. Is the decay K0 → π+π0π− possible? Is the decay K0 → π+π0π0π− possible? Prove
your assertions by a short calculation.

The mesons, K0, π±, π0, have no spin and are odd under parity (space reflection). The K0, K0

have (isospin) Iz = − 1
2
, + 1

2
, respectively, while the π+, π0, π− have Iz = +1, 0,−1, respec-

tively. The (rest-) masses are (in MeV/c2): mK0 = 497.7, mπ0 = 135.0, mπ± = 139.6. Some

possibly useful Clebsh-Gordan coefficients: 〈1, 1; 1,−1|2, 0〉 = 1/
√

6, 〈1, 1; 1,−1|1, 0〉 = 1/
√

2,

〈1, 1; 1,−1|0, 0〉 = 1/
√

3, 〈1, 1; 0, 0|2, 0〉 =
√

2/3, 〈1, 1; 0, 0|1, 0〉 = 0, 〈1, 1; 0, 0|0, 0〉 = −1/
√

3.
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5. Consider a particle of mass µ in a 1-dimensional periodic potential shown in the figure.
The height of the barriers is V0, and the potential satisfies V (x + `) = V (x):

−a

V0

+a

x

b

`

a. Using the translational symmetry, prove that there is a complete set of stationary
states which obey

ψ
E
(x + `) = eiK`ψ

E
(x) , E > 0 ,

where K is a constant.

b. Determine this K by imposing a periodic boundary condition on the wave function
over a large but finite region with N barriers: ψ

E
(x + N`) ≡ ψ

E
(x), for all E.

c. Write down the general solution within −a ≤ x ≤ `+a, and for any E > 0. Using the
results from parts a. and b., reduce the number of undetermined constants to four.
Then use the boundary matching conditions to find the system of equations which
determins the remaining four constants (you need not solve this system).

d. When 0 < E < V0, and writing kh̄ =
√

2mE and κh̄ =
√

2m(V0−E), the energy
condition

cos(kb) cosh(2κa) +
κ2 − k2

2κk
sin(kb) sinh(2κa) = cos(K`)

must be enforced for ψ
E
6≡ 0. Show that this forbids certain regions of energy.

e. Considering carefully the limit when a → 0 and V0 → ∞ but 2aV0 = Ω = constant,
find the resulting energy condition and obtain the lowest order estimate for the mini-
mum allowed energy.
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6. The spin Hamiltonian for a spin-1
2 particle in a magnetic field is given by H = ~ω·~S,

where the matrix representation of the spin operators is given by [~S ] = 1
2 h̄~σ, in terms of

the usual Pauli matrices σ1,σ2,σ3.

a. Show that the time evolution operator for the quantum state vectors takes the form
U(t) = eiMt, where M2 = 1l.

b. Expand the time evolution matrix to show that it is proportional to a linear combi-
nation of 1l and M.

c. If the system is in the state
∣∣m = + 1

2

〉
at time t = 0, determine the state of the system

at a later time t > 0.

d. Determine the probability that the system is measured to be in state
∣∣m = + 1

2

〉
at a

later time t > 0.
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