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Problem 1.

If the solar system were immersed in a uniformly dense spherical cloud of weakly-interacting massive

particles (WIMPs), then objects in the solar system would experience gravitational forces from both

the sun and the cloud of WIMPs such that

Fr = − k
r2
− br,

where r is the radial distance to the center, k and b are constants.

[7 pt] a. Determine the Lagrangian of a particle of mass m in this force field.

[6 pt] b. Determine the corresponding Hamiltonian.

[6 pt] c. Derive the equations of motion.

[6 pt] d. Compute the frequency of small radial oscillations for a nearly circular orbit. Assume that

near the circular orbit, the extra force due to the WIMPs is very small, i.e., b� k/r3.

Problem 2.

A particle with mass m and charge e is moving in the (x, y)-plane in a magnetic field described by

the vector potential ~A = 1
2
B(x êy−y êx), where B is the magnitude of the magnetic field (uniform).

[6 pt] a. Determine the Hamiltonian, H.

[5 pt] b. Consider the following transformation of coordinates:

x =
1√
mω

(√
2P1 sinQ1 + P2

)
, y =

1√
mω

(√
2P1 cosQ1 +Q2

)
, (1)

Px =

√
mω

2

(√
2P1 cosQ1 −Q2

)
, Py =

√
mω

2

(
−
√

2P1 sinQ1 + P2

)
. (2)

Prove that the Poisson bracket [x, Px]Q,P = 1.

[2 pt] c. Is this the only necessary condition for the transformation to be canonical? If not, state the

complete set of conditions.

[6 pt] d. Rewrite the hamiltonian H in terms of the set of coordinates {Q1, Q2, P1, P2}, with ω = eB
mc

.

[6 pt] e. Derive Hamilton’s equations, and solve them. Interpret the result.
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Problem 3.

The space between two concentric spheres of radii R1 and R2 (R1 < R2) is charged to a volume

charge density given by ρ = α/r2 (α is a constant).

[5 pt] a. Compute the total charge, q.

[6 pt] b. Compute the electric potential, φ in all the space.

[8 pt] c. Compute the electric field strength, ~E in all the space.

[6 pt] d. Determine the limiting case R2 → R1, assuming q to be constant. Explain the result.

Problem 4.

Consider the propagation of electromagnetic fields in a non-conducting medium with constant per-

meability and susceptibility.

[6 pt] a. Write down Maxwell’s equations in this medium.

[6 pt] b. Show that if ρ = ~ = 0, ~E and ~B satisfy the wave equation. Find an expression for the wave

velocity.

[6 pt] c. Write down the plane wave solutions for ~E and ~B and show how ~E and ~B are related.

[7 pt] d. Discuss the reflection and refraction of the electromagnetic waves at a plane interface between

two dielectrics and derive the relationships between the angles of incidence, reflection and

refraction.
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Problem 5.

Derive the following relations between the thermodynamic variables: temperature (T ), volume (V ),

pressure (P ), entropy (S) and internal energy (U):

[5 pt] a. ( ∂T
∂V

)S = −(∂P
∂S

)V .

[5 pt] b. ( ∂T
∂P

)S = (∂V
∂S

)P .

[5 pt] c. (∂P
∂T

)V = ( ∂S
∂V

)T .

[5 pt] d. (∂V
∂T

)P = −( ∂S
∂P

)T .

[5 pt] e. (∂U
∂V

)T = T (∂P
∂T

)V − P .

Problem 6.

An assembly of N particles of spin 1/2 are lined up on a straight line. Only nearest neighbors

interact. When the spins of both neighbors are both up or both down, their interaction energy is

J . When one spin is up and the other is down, the interaction energy is −J .

[7 pt] a. Determine the partition function Z of the assembly at temperature T .

[6 pt] b. Compute the free energy of the system, F .

[6 pt] c. Compute the internal energy, U .

[6 pt] d. Compute the entropy, S.

Problem 7.

Consider an adsorbent surface having n sites, each of which can adsorb one gas molecule. This

surface is in contact with a vapor with chemical potential µ (determined by the pressure P and

temperature T ). Assume that the adsorbed molecule is monoatomic and has energy ε0 compared

to one in a free state.

[6 pt] a. If N molecules are adsorbed, compute the number of possible different configurations of the

system.

[7 pt] b. Compute the Grand Canonical Partition Function of the system.

[6 pt] c. Calculate the coverage ratio θ, i.e., the ratio of adsorbed molecules to adsorbing sites on the

surface.

[6 pt] d. Compute θ(P, T ) assuming that the vapor is an ideal gas.
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Problem 1.

A pion decays into a muon and an antineutrino, π− → µ− + νµ. All three are particles massive,

although mν � mµ < mπ.

[5 pt] a. Working within the CM (center-of-momenta) coordinate frame, compute the total (relativistic)

energy of the emitted muon in terms of only the masses and universal constants.

[2+5 pt] b. Compute the total (relativistic) energy of the emitted neutrino in terms of only the masses and

universal constants. Compute the ratio of Eν/Eµ to first order in
(m 2

ν

m 2
π

)
� 1.

[8 pt] c. Compute the magnitude of the (relativistic) linear momenta of the emitted muon and antineu-

trino in terms of only the masses and universal constants.

[5 pt] d. In the limit mν → 0, compute the muon’s energy and magnitude of its linear momentum.

Problem 2.

A particle of mass m and charge q enters a region with the vertically upward oriented homogeneous

magnetic field ~B = Bêz with the horizontal velocity ~v = vêx.

[5 pt] a. Determine the radius of curvature of the trajectory of this particle while traveling through this

magnetic field, calculating separately for the non-relativistic and the relativistic regime.

[5 pt] b. Assuming that the region with the magnetic field is sufficiently broad, will the motion of the

particle be periodic? If so, calculate its period, frequency and angular momentum magnitude.

[7 pt] c. For particles traveling in closed orbits within this magnetic field, use wave-particle duality to

determine the condition that quantizes their energy, assuming non-relativistic motion. Com-

pute the quantized energy and angular momentum spectra.

[8 pt] d. For an electron, compute the range of the intensity of the homogeneous magnetic field so that

the speed of the electron orbiting would not exceed the speed of light.
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Problem 3.

A particle of mass m and electric charge q moves in a horizontal plane (z= 0), within a constant

magnetic field ~B = Bêz but otherwise freely. Use that the physical linear momentum of this charged

particle is modified to ~P = ~
i
~∇− q ~A and ~A = 1

2
( ~B×~r ).

[(2+5) pt] a. Compute ~A, verify that (~∇· ~A) = 0 and show that the non-relativistic Hamiltonian is H =

− ~2
2m
~∇2 − qB

2m
L z + (qB)2

8m
ρ2, where ρ =

√
x2+y2 the “radial” coordinate in the cylindrical coor-

dinate system. and L z is the z-component of the angular momentum operator

[5 pt] b. For the stationary state function Ψ(ρ, φ, z = 0, t) = eiωtR(ρ)eiµφ to satisfy the Schrödinger

equation, determine the differential equation that R(ρ) must satisfy.

[6 pt] c. For the radial function R(ρ) = e−aρ
2
f(ρ), determine α so that the no-derivative terms in

the differential equation that f(ρ) satisfies (the “effective potential”) would contain only two

different powers of ρ. Determine the resulting differential equation that f(ρ) satisfies.

[8 pt] d. Writing f(ρ) =
∑∞

k=0 ckρ
k+s, compute the recursion relation for ck so that R(ρ) = e−αρ

2
f(ρ)

is the radial factor in the stationary state function, show that this series must be terminated

(why?), show that this quantizes the energy, and find the energy spectrum.

Problem 4.

Consider a modified harmonic oscillator, with the Hamiltonian H = ~ω(a†a+1
2
) + Aaa + A∗a†a†,

where ω is the characteristic frequency of the linear harmonic oscillator and A is a suitable complex

constant. Write H 0 = ~ω(a†a+1
2
) and H 0 |n〉 = ~ω(n+1

2
) |n〉, as usual.

[3 pt] a. Treating H 1 = Aaa+A∗a†a† as a small perturbation, compute the first order (stationary state)

perturbative corrections to the energy.

[6 pt] b. Still treating H 1 as a small perturbation, compute the first order (stationary state) perturbative

corrections to the stationary state |n〉.

[6 pt] c. Still treating H 1 as a small perturbation, compute the second order (stationary state) pertur-

bative corrections to the energy.

[7 pt] d. Determine the eigenstate H |E〉 = E |E〉 of the full Hamiltonian as a formal expansion |E〉 =∑∞
n=0 cn |n〉; determine all the coefficients cn via the complete sequence of recursion relations.

[3 pt] e. Determine the degeneracy of the eigenstates H |E〉 = E |E〉.
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Problem 5.

A spin-1/2 nucleus is placed in a large constant magnetic field ~B0 = B0 êz, with a weaker oscillating

magnetic field
~B1 = B1 cos(ωt) êx +B1 sin(ωt) êy, B1 < B0,

rotates in the (x, y)-plane. Denote ω0
def
= µB0/~ and ω1

def
= µB1/~, where µ is the magnitude of

the magnetic dipole moment of the nucleus. Use the interaction picture, where the Hamiltonian

reduces to H = µ ~B · ~σ, and where ~σ = (σ1,σ2,σ3) is the vector of 2× 2 Pauli matrices.

[5 pt] a. Using the 2-component matrix notation, Ψ(t) =
[ ψ1(t)
ψ2(t)

]
, derive the system of 1st-order differ-

ential coupled equations for ψi(t) implied by the Schrödinger equation.

[5 pt] b. Show that the system of two 1st-order differential equations from part a is equivalent to two

uncoupled 2nd-order differential equations for each of ψi(t) separately, and compute their

general solutions, exhibiting four integration constants.

[5 pt] c. Using the original Schrödinger equation, reduce the number of independent integration con-

stants from part b to two, i.e., compute the general solution of the original Schrödinger equation

in 2-component matrix form.

[3 pt] d. If the nucleus was in the “spin-up” state at t = 0, Ψ(0) =
[

1
0

]
, determine the state of the

nucleus at all later times, t > 0.

[7 pt] e. Calculate the probability that the nucleus will be in the “spin-down” state at a particular,

fixed later time, T > 0.

Problem 6.

Consider a single hydrogen atom, initially in the |2, 0, 0〉 state. Neglect the motion of the proton,

the magnetic dipole moments (and spins) of the electron and the proton and relativistic effects, and

restrict your analysis to n= 2 states.

[3 pt] a. In this approximation and knowing that the energy of the ground state is −13.6 eV, list the

energies of the n= 2 states.

[7 pt] b. If the hydrogen atom was placed in a weak electric field ~E = E êz for a long time, compute the

energy levels of the n= 2 states to lowest order in the magnitude of the electric field, E .

[10 pt] c. If the weak electric field was only turned on at the time t= 0 when the hydrogen atom was

known to be in the |2, 0, 0〉 state, and made to alternate as ~E = E cos(Ωt) êz for all t > 0,

compute the probability that the hydrogen atom is found in the |2, 1, 0〉 state after a long

enough time T � 1
Ω

and to lowest order in the magnitude of the electric field, E .

[5 pt] d. Compute the frequency with which the probability that the hydrogen atom is at a later time

T > 0 found in the |2, 1, 0〉 state reaches its maximum.
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Problem 7.

Consider a photon gas enclosed in a volume V and in equilibrium at temperature T . The photon

is a massless particle, so that its energy is relativistic and given by ε = pc.

[6 pt] a. Determine the chemical potential of the gas. Explain your answer.

[7 pt] b. Determine how the number of photons in the volume depends upon the temperature.

[6 pt] c. Determine the form of the spectral energy density ρ(ω).

[6 pt] d. Determine the temperature dependence of the average energy 〈E 〉.



Possibly useful information:

Symbol Value Physical Meaning

c 3.00× 108 m/s speed of light in vacuum

~ 1.05× 10−34 J s Planck’s constant

me 9.11× 10−31 kg electron mass

e 1.60× 10−19 C unit charge

a 5.29× 10−11 m Bohr radius

~∇ ·(~∇f) = ~∇2f, ~∇×(~∇× ~X ) = ~∇(~∇ · ~X )− ~∇2 ~X.

In cylindrical coordinates,

~∇ · ~X =
1

ρ

∂(ρAρ)

∂ρ
+

1

ρ

∂Aφ
∂φ

+
∂Az
∂z

, ~∇× ~X =
1

ρ

∣∣∣∣ êρ ρ êφ êz
∂
∂ρ

∂
∂φ

∂
∂z

Xρ ρXφ Xz

∣∣∣∣
and

~∇2X =
[∂2X

∂ρ2
+

1

ρ

∂X

∂ρ

]
+

1

ρ2

∂2X

∂φ2
+
∂2X

∂z2
.

In spherical coordinates,

~∇ · ~X =
1

r2

∂(r2Ar)

∂r
+

1

r sin θ

∂(sin θAθ)

∂θ
+

1

r sin θ

∂Aφ
∂φ

, ~∇× ~X =
1

r2 sin θ

∣∣∣∣ êr r êθ r sin θ êφ
∂
∂r

∂
∂θ

∂
∂φ

Xr rXθ r sin θXφ

∣∣∣∣
and

~∇2X =
∂2X

∂r2
+

2

r

∂X

∂r
+

1

r2

∂2X

∂θ2
+

cot θ

r2

∂X

∂θ
+

1

r2 sin2 θ

∂2X

∂φ2
.

The hydrogen-like atom wave-functions neglecting the electron and the proton spin:

|n, `,m〉 =

√(2Z

na

)3 (n−`−1)!

2n(n+`)!
e−%/2 %` L2`+1

n−`−1(%) Y m
` (θ, φ), %

def
=

2Z

na
r,

where Lkn(%) =
e%%−k

n!

dn(e−%%n+k)

d%n
are the associated Laguerre polynomials, and

Y 0
0 (θ, φ) =

1√
4π
, Y 0

1 (θ, φ) = −
√

3

4π
cos θ, Y 0

1 (θ, φ) =

√
3

8π
sin θ eiφ,

Y 0
2 (θ, φ) =

√
5

4π

(3
2
cos2 θ−1

2

)
, Y 1

2 (θ, φ) = −
√

15

8π
sin θ cos θ, Y 2

2 (θ, φ) =

√
15

32π
sin2 θ e2iφ, . . .

are the first few spherical harmonics (in the Condon-Shotley convention).


