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Problem 1.

A simple pendulum is shown in the top figure to the right:
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[5 pt] a. Show that the angular frequency for the

simple harmonic motion is ! =
p

g

l
.

[5 pt] b. Write the period of the pendulum for small oscillations.

Consider now the system displayed in the lower figure to the

right. The point A is free to move along a horizontal line

under the action of the springs having a constant k. After

displacing point A by a small distance x to the right, do the

following:
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[5 pt] c. Set up the Lagrangian for this system.

[5 pt] d. Write the Equations of Lagrange for this system.

[5 pt] e. Show that for small oscillations, the period T of this

pendulum is now T = 2⇡
q

mg+2kl
2kg .

Problem 2.

Consider a homogeneous cube of density ⇢, mass M and side of length b.

[6 pt] a. Calculate the inertia tensor of the cube in a coordinate system with the origin at the center of

mass. Clearly indicate the coordinate system in a figure.

[6 pt] b. Find the principal moments of inertia and principal axes, keeping the origin at the center of

mass.

[6 pt] c. Calculate the inertia tensor in a coordinate system with the origin at one of the corners of the

cube. Clearly indicate the coordinate system in a figure.

[7 pt] d. Find the principal moments of inertia and principal axes, keeping the origin at the corner of

the cube.
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Problem 3.

A charged particle is moving in a constant magnetic field H, with vector potential Ay = xH,

Az = Ax = 0.

[5 pt] a. Write the Hamiltonian.

[5 pt] b. What are the constants of the motion? Justify.

[5 pt] c. Obtain the Hamilton equations of motion.

[5 pt] d. Solve the equations of motion.

[5 pt] e. Describe the motion of the particle.

Problem 4.

[5 pt] a. Write the four Maxwell’s Equations in di↵erential form and give a short explanation for each

equation.

[5 pt] b. Write the continuity equation.

[5 pt] c. Derive the wave equation for electromagnetic fields propagating in free space. Begin your

derivation with the Ampere-Maxwell equation.

Now, consider the interface between two di↵erent nonconducting media.

[5 pt] d. State the continuity conditions for the field strengths (E, B, D and H) and sketch their

derivations, i.e., physical origins.

[5 pt] e. From these continuity conditions, derive the laws of reflection and refraction.

Problem 5.

A parallel-plate capacitor of plate area 0.2m2 and plate spacing 1 cm is charged to 1,000V and is

then disconnected from the battery. (Use ✏0 = 8.9⇥ 10�12 C2
/(N.m2))

[7 pt] a. Calculate the capacitance of the capacitor.

[6 pt] b. Compute the energy stored in the capacitor.

[6 pt] c. Compute the work required to pull the plates apart to double the plate spacing.

[6 pt] d. Compute the final voltage on the capacitor.
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Problem 6.

[5 pt] a. Define or state (be brief, but precise and define symbols and/or terms you use):

i. the Zeroth Law of Thermodynamics;

ii. temperature;

iii. absolute temperature;

iv. the First Law of Thermodynamics;

v. the thermodynamic entropy;

vi. the most general statement of the Second Law of Thermodynamics;

vii. the Third Law of Thermodynamics.

Consider a lattice ofN atoms, each of which can be in one of two states, of energy 0 or ✏, respectively.

Suppose that the total energy is E. (You may assume that E is an integer multiple of ✏.)

[7 pt] b. Using Stirling’s approximation: lnn! ⇡ (n log n� n)
p
2⇡n, show that

ln
�
⌦(N,E)

�
= N lnN � (E/✏) ln

�
E/✏

�
� (N�E/✏) ln

�
N � E/✏

�
.

[6 pt] c. Compute the temperature T (N,E).

[6 pt] d. Compute the heat capacity C(N,E).

[6 pt] e. Compute the Helmholtz Free Energy A(N,E).

Problem 7.

ConsiderN fixed non-interacting magnetic moments each of magnitude µ0. The system is in thermal

equilibrium at temperature T and is in a uniform external magnetic field B. Each magnetic moment

can be oriented parallel or antiparallel to B. Calculate the following:

[7 pt] a. the partition function,

[6 pt] b. the specific heat,

[6 pt] c. the thermal average magnetic moment.

[6 pt] d. Show that in the high temperature limit the Curie Law is satisfied, i.e. the magnetic suscepti-

bility � is proportional to 1/T .
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Problem 1.

Observers on Earth see two meteorites flying on a direct collision course towards each other, with

equal speeds of 0.60 c. At Earth-time tE = 0.00 s, the two meteorites are measured (in Earh-frame)

to be ` = 900, 000 km apart from each other.

[5 pt] a. Compute the Earth-time at which the two meteorites will collide.

[5 pt] b. Compute the speed with which one meteorite is approaching the other, from the rest-frame of

the latter meteorite.

[5 pt] c. Compute the time that elapses in the meteorite frame between the initial moment tM = 0.00 =

tE and the collision.

[10 pt] d. If both meteorites had the same mass, m, before the collision and they clump together without

ejecting any debris after the collision, compute the mass of the so-fused object and its relativistic

momentum in Earth-frame.

Problem 2.

An X-ray photon of wave-length � collides with an electron that

was initially at rest. The photon deflects from its initial direction

by an angle ✓, while the electron recoils at an angle � from the

photon’s initial direction. x

y

�

�
0

✓

�

me

[5 pt] a. Using the coordinate system and symbols given in the figure

to the right, express the energy and linear momentum of both

the photon and the electron, before and after the collision.

[6 pt] b. Write down the conservation equations which completely

determine all parameters in this scattering.

[6 pt] c. Derive Compton’s formula, �0�� = h

me c
(1�cos ✓) from the conservation equations you specified

in the previous part.

[8 pt] d. An incoming neutrino (m⌫ ⇡ 0 ) of energy E⌫ is absorbed by a neutron, which emits an elec-

tron at the angle ✓ and thus turns into a proton. Using the same conservation laws, that

mn ⇡mp+me and neglecting the proton recoil, show that |~pe| =
p
E⌫(E⌫ + 2mec

2)/c.
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Problem 3.

A particle of mass m is confined to move in one dimension, and under the influence of a potential

V (x) = 1 for x < 0, V (x) = �V0 for 0 < x < a, V (x) = 0 for x > a.

[5 pt] a. Sketch the situation and specify all the boundary conditions on the wave-function representing

this particle.

[5 pt] b. Specify: the Hamiltonian for this particle, the functional form of its wave-function, and use

the boundary conditions to find the equation which determines the bound-state energies.

[5 pt] c. From your solution so far, determine the minimal value of V0 > 0 so that there would exist at

least one bound state.

[5 pt] d. For scattering states (E > 0), derive the condition that relates the energy of the state to its

phase-shift between the “inside” (0 < x < a) and “outside” (x > a) oscillatory solution.

[5 pt] e. Compute this phase-shift as a function of the energy of the state.

Problem 4.

A particle of mass m is contained within a 1-dimensional box, limiting x 2 [�L

2 ,
L

2 ].

[5 pt] a. Write down the Schrödinger equation for the wave-function of this particle, specify all the

boundary conditions, write down the wave-functions for the complete set of stationary bound

states and state their energies.

[5 pt] b. If the original system is prepared in its ground state and the walls of the box are instantaneously

moved symmetrically to twice the width of the box, compute the probability that the system

will be found in the ground state of this wider-boxed particle.

[5 pt] c. If the original system is prepared in its 1st excited state and the walls of the box are again

instantaneously moved symmetrically to twice the width of the box, compute the probability

that the system will be found in the ground state of this wider-boxed particle.

[5 pt] d. If the original system is modified by adding to the potential a perturbation Ĥ
0 = ��(x), compute

the lowest-order non-vanishing perturbative corrections to the stationary state energies.

[5 pt] e. If the perturbation is made oscillatory in time Ĥ
0 ! Ĥ

0(t) = ��(x) cos(!t), compute the

probability that a system initially (at t = 0) in the ground state could after a long time

T � !
�1 be found in its first excited state.
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Problem 5.

Consider the linear harmonic oscillator with characteristic frequency !. Define â :=
p

m!

2~
�
x̂+ i

m!
p̂
�

and its Hermitian conjugate â† as usual in terms of the position x̂ and linear momentum p̂. Use the

standard basis, H =
�
|ni , n = 0, 1, 2, · · ·

 
, where â |ni =

p
n |n�1i and â

† |ni =
p
n+1 |n+1i.

[5 pt] a. Derive the commutation relation [ â , â† ] from the canonical relation, [ x̂ , p̂ ] = i~.
[5 pt] b. Construct an eigenstate, |zi, of the annihilation operator: â |zi := z |zi as a formal expansion

|zi :=
P

n
cn |ni, determining as many of the constants cn as you can in terms of the eigenvalue,

z.

[5 pt] c. Re-expressing your result as |zi = Ẑz |0i, determine the correctly normalized operator Ẑz, and

all the values that the eigenvalue z permitted so |zi is normalizable.

[5 pt] d. Calculate Û
�1(t) â Û(t), where Û(t) := e

�i
t
~ Ĥ is the evolution operator.

[5 pt] e. Calculate Û(t) |zi. Determine from this a physical interpretation of z, and of |zi.
Hint: Be careful with the limits on |ni-summations. You may need the Baker-Campbell-Hausdor↵ for-

mulae, eAeB = eBeAe[A,B]
and eAeB = eA+B� 1

2 [A,B]
, both valid if [A, [A,B]] = 0 = [B, [A,B]], and the

generally valid e↵AB e�↵A = B +
P1

k=1
↵
k

k!

⇥
A, [A, · · · [A| {z }

k times

, B ] · · · ]
⇤
.

Problem 6.

Consider a non-interacting non-relativistic gas of N spin-1/2 fermions, at temperature T = 0 and

confined to an L⇥L square-shaped surface.

[5 pt] a. Determine the number of quantum states available to these fermions with linear momentum

between p and p+ dp.

[8 pt] b. Observing Pauli’s exclusion principle, determine the Fermi energy, EF , below which all states

are filled and above which all states are empty.

[6 pt] c. Show that the total energy of this ensemble is E = 1
2NEF , and compute the average energy.

[6 pt] d. Using that the volume of the system is L⇥L⇥ d where the thickness is d ⌧ L and working

“per unit thickness,” compute the pressure in this ensemble.

Problem 7.

Consider a 1-dimensional harmonic oscillator of mass m and characteristic frequency !.

[5 pt] a. Write down the Hamiltonian and its eigenvalues, corresponding to the standard stationary

states |ni.
[8 pt] b. Compute the lowest-order relativistic correction to the Hamiltonian in operator form, and com-

pute the lowest-order perturbative non-vanishing corrections to the stationary state energies.

[7 pt] c. Compute the lowest-order perturbative non-vanishing corrections to the stationary state ener-

gies due to the anharmonic perturbation Ĥ
0 = �x̂

4, and determine the value of � for which

this equals the corrections you found in the previous computation.

[5 pt] d. Determine if it is possible to choose � so that the two previously computed lowest-order cor-

rections would cancel, and if so estimate the next-order non-vanishing correction if any.


