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Problem 1.

A particle of mass moves on the inside surface of a smooth cone

whose axis is vertical and whose half-angle is α as shown in the

diagram.

[4 pt] a. Determine the kinetic energy, T , and potential energy, V ,

for the system.

[3 pt] b. Construct the Lagrangian function.

[6 pt] c. Find the Euler-Lagrange equation of motion.

[6 pt] d. θ is a cyclical coordinate for this system. Calculate an ex-

pression for the conserved quantity of angular momentum,

`, and then write an equation for θ̇ using the expression that

you calculated for the angular momentum.

[6 pt] e. Find the period of small oscillations about a horizontal cir-

cular orbit located at a height h above the vertex.

Problem 2.

A particle of mass m can move in one dimension under the influence of

two springs (see figure). The upper spring is attached to a moving point A

that moves up with constant velocity v0. The lower spring is attached to

a fixed point B. The springs obey Hooke’s law and have zero un-streched

lengths and force constants k1 and k2 respectively.

[5 pt] a. Find the Lagrangian.

[5 pt] b. Find the Hamiltonian. Is it constant? (Justify your answer)

[5 pt] c. Find the energy. Is it conserved? (Justify your answer)

[5 pt] d. Obtain the equations of Hamilton.

[5 pt] e. Find the solution of the equations of motion.
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Problem 3.

A yo-yo has a rotational inertia of I and a mass M . Its axle radius is R, and its string length is L.

The yo-yo rolls from rest down to the end of the string. Neglect friction.

[5 pt] a. Compute the magnitude of its linear acceleration.

[5 pt] b. Compute the time it takes to reach the end of the string.

As the yo-yo reaches the end of the string, compute its:

[5 pt] c. linear speed;

[5 pt] d. translational kinetic energy;

[5 pt] e. rotational kinetic energy.

Problem 4.

A point charge q is placed at a distance R from the center of a grounded, perfectly conducting

sphere of radius a < R. (Hint: the method of images may help.)

[6 pt] a. Compute the force that the so-charged sphere exerts on the point-charge q.

[6 pt] b. Show that for R � a, this force decreases as 1/R3, whereas when a < R � 2a, this force

decreases as 1/(R− a)2.

[6 pt] c. Now re-consider the same point-charge q being brought to the same location near the conducting

sphere, but with the conducting sphere now being electrically neutral and insulated. Recompute

the force that it exerts on the point-charge q.

[7 pt] d. Compute the induced surface charge distribution on the surface of the conducting sphere.

Problem 5.

Consider a rectangular, perfect conductor wave-guide supporting the propagation of a monochro-

matic electromagnetic wave along its infinite length in the z-direction, with a width (in the x-

direction) of a and a height (in the y-direction) of b > a.

[5 pt] a. State the boundary conditions on the components of ~E, ~B at the walls, and in particular the

conditions on Ez and Bz.

[8 pt] b. Starting from Maxwell’s equations (there are no free charges of currents inside the wave-guide),

obtain the wave equation which describes the ~E, ~B fields of the lowest-frequency mode. (Hint:

this mode has ~E = êyEy.)

[6 pt] c. Determine the solutions for ~E, ~B that satisfy all the boundary conditions.

[6 pt] d. For this lowest-frequency propagating mode, compute the dispersion relation, the phase velocity

and the group velocity, and verify that vph·vg = c2.
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Problem 6.

[4 pt] a. Write down the four Maxwell’s equations of electrodynamics, and state briefly (in a line or

two) what each equation is expressing.

[8 pt] b. Assume a harmonic plane wave form for the electric and magnetic fields, such that each field

has a constant amplitude. Also, assume that the fields to be monochromatic, with same (single)

frequency, ω and same wave-verctor ~k. Starting with the relevant Maxwell’s equations, show

that the dispersion relation is:
~k · ~k = ω2µε. (1)

For a dispersive material, assume that the permittivity and permeability are given as:

ε = ε0 n(ω) and µ = µ0 n(ω) (2)

[5 pt] c. Starting with the relevant Maxwell’s equations, find the phase and group velocity for the plane

waves if the dispersion relation is given by the expression you derived in part b of this problem.

[4 pt] d. Show that if dn
dω

= 0, there is no dispersion and the phase and group velocity always have the

same sign.

[4 pt] e. When n(ω) < 0, determine the condition for backwards traveling waves (i.e. the waves for

which phase and group velocities have opposite signs). Such materials that exhibit negative

indices of refraction are called negative-index (meta)materials.

Problem 7.

The molecules of a gas have only two possible states of internal energy with statistical weights

(degeneracies) g1 and g2, and energies 0 and ε, respectively. Let n1 and n2 be the number of

molecules in states 1 and 2, respectively, so that n1 + n2 = N = Avogadro’s number.

[kB = Boltzmann’s constant = 1.38× 10−23 J/K]

[5 pt] a. Write the canonical partition function Z of the system.

[5 pt] b. Obtain the expression for the ratio n2/n1.

[5 pt] c. Solve for n1 = n1(g1, g2, N, ε, T ) and n2 = n2(g1, g2, N, ε, T ).

[5 pt] d. Derive an expression for the total internal energy, U , of the system.

[5 pt] e. Obtain an expression for the molar heat capacity at constant volume, CV .
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Problem 1.

Consider a van moving with relativistic velocity ~v (in x-direction

for simplicity), with a light source inside the van at a height h

from the floor of the van and a detector right below the source

that records every time the light source is turned on and the

signal (light) hits the detector. There are also two observers: S

standing on the ground and S ′ in the van, who observe this event.

S’

S

h

v

Detector[4 pt] a. According to Special Relativity, what are the speeds of the

signal from the light source as recorded by the ground ob-

server, S and the observer, S ′?

[4 pt] b. What are the distances (d) and (d′) travelled by the signal

as it travels between the source and the detector according

to the ground observer, S and the observer, S ′?

[6 pt] c. According to the ground observer, S and the observer, S ′, how much time elapses between

turning on of the light signal and the light hitting the detector? Call these ∆t and ∆t′.

[11 pt] d. From the expressions found in previous part of this problem, derive the relation between ∆t

and ∆t′? In your own words, explain the meaning of the relation. Which of the time intervals

(∆t and ∆t′) measured by the two observers is the proper time. Explain. (5+3 +3 pts)
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Problem 2.

This problem concerns photoelectric and Compton effects.

[6 pt] a. Describe the photoelectric effect and give Einstein’s explanation for the photoelectric effect.

[6 pt] b. Einstein’s assumption about the nature of light was able to explain several experimental ob-

servations about the process. In your own words and restricting yourself to 2-3 lines, describe

how these experimental observations were explained:

i. Within the limits of experimental accuracy, photoelectric effect is an instantaneous process.

ii. The photoelectrons come out with a range of kinetic energies, with a maximum value, Kmax.

This Kmax does not depend on the light intensity!

iii. Higher the frequency, f , of the light (assuming f > f0), greater is the energy of the photo-

electrons.

Consider a metal plate made of iron that has threshold frequency of f0 = 1.1 × 1015 Hz. Light of

wavelength 250 nm is impinging on the metal.

[3 pt] c. Determine the work function of iron. Give answer in eV.

[5 pt] d. Determine the maximum kinetic energy possible for the photoelectrons. Give answer in eV.

[2 pt] e. Determine the stopping potential.

[3 pt] f. Compton effect in which X-ray photons are collided with electrons can be explained using the

same assumptions about the nature of light as in the photoelectric effect. However, we ignore

the binding energies of the electrons in the metal. Explain why this is a good approximation?

Problem 3.

A particle of mass moves in a two-dimensional infinite square well such that:

V (x) =

{
0 for 0 < x < L and 0 < y < L,

→∞ at x = 0, x = L, y = 0, y = L.
(1)

[8 pt] a. Obtain the energy eigenvalues and eigenfunctions (you need not normalize them).

[8 pt] b. The potential well is deformed so that Lx = L(1 + ε) and Ly = L(1 − ε) where 0 < ε � 1.

What are the new energy eigenvalues and the corresponding eigenfunctions?

[9 pt] c. Discuss the effect of the deformation on the lowest three unperturbed levels by plotting the

energy as a function of ε. Identify each level by the corresponding eigenfunction.
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Problem 4.

Consider a simple quantum-mechanical system with two degrees of freedom, and an observable of

this system represented by the hermitian matrix F̂ =
[
1 2
2 1

]
.

[4 pt] a. Determine the complex variables α, β so that the state vectors |1〉 = 1√
2

[ 1i ] and |2〉 = [
α
β ] form

an orthonormal basis for 2-dimensional vectors.

[6 pt] b. Construct the projection operators Π̂n = |n〉 〈n|, and than prove that: (i)
∑2

n=1 Π̂n = 1l, and

(ii) Π̂1Π̂2 = 0.

[6 pt] c. Determine all possible results of (single attempts of) measuring F̂ , and the corresponding

eigenvectors.

[3 pt] d. Calculate the expectation value of F̂ in the pure state |A〉 = 1√
5
(|1〉 − 2 |2〉).

[6 pt] e. Calculate the probability that the measurement of the observable F̂ would turn out to be

f1 = 3, if the system was initially prepared to be in the mixed state ρ̂ = (1
3
Π̂1 + 2

3
Π̂2).

Problem 5.

Consider a 2-dimensional isotropic harmonic oscillator constrained to the (x, y)-plane, that has the

potential V (x, y) = 1
2
mω2(x2 + y2).

[6 pt] a. Write down the Schrödinger equation for stationary states with energies Enx,ny , then rewrite

it, using the standard operators âx =
√

mω
2~

(
x + i

mω
P̂x
)

and ây =
√

mω
2~

(
y + i

mω
P̂y
)
, and their

conjugates.

[6 pt] b. Determine the degeneracy of the energy levels from part a , and show that it is a consequence of

the rotational symmetry in the (x, y)-plane. (Hint: Consider the action of the mixed operator

L̂ = i~(â†x ây−â†y âx) on the Hamiltonian, and draw conclusions from your result.)

[6 pt] c. Consider a perturbation that modifies the Hamiltonian by adding Ĥ → Ĥ + λ(x+y), where

λ > 0 is a sufficiently small parameter. Prove that to 1st order, the energy levels remain the

same, but that the states mix.

[7 pt] d. Compute the exact energy levels upon including the perturbation.
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Problem 6.

Let ~J1 and ~J2 be the angular momenta operators for two independent systems and let ~J = ~J1 + ~J2
be the total angular momentum (suppressing the operator sign “ˆ” on the ~J ’s here to avoid too

many symbols).

[6 pt] a. State whether the following commutators are zero or non-zero, giving reasons for your answers

(through direct computation or geometrical or physical reasoning). No points will be given for

just an answer (even if correct) without a corresponding reason.

i. [J1y, J2z]

ii. [Jx, J2y]

iii. [J2
2 , J2x − J1x]

Now let angular momenta j1 = 1 and j2 = 2. Parts (b)-(e) of the problem concerns Clebsch-Gordan

coeffcients, 〈j1,m1, j2,m2|j,m〉.

[3 pt] b. Very briefly and precisely describe the significance (meaning) of Clebsch-Gordan coeffcients.

[2 pt] c. Determine the allowed values of total angular momentum j when we add angular momenta ~J1
and ~J2 with the particular eigenvalues j1 and j2.

[4 pt] d. Determine the the values of the Clebsch-Gordan coeffcients 〈1,−1, 2,−2|3,−3〉 and

〈2,+1, 2,+2|3,+3〉. Explain your answers.

[6 pt] e. Write the coupled (composite angular momentum) state |j,m〉 = |3, 2〉 in terms of the uncou-

pled (product) basis states.

[4 pt] f. A large collection of mixed particles is prepared and this system is subjected to simultaneous

measurement of the observables corresponding to the operators J2 and Jz. The measurement

yields j = m = 1 with a probability of 2/3 and j = m = 2 with a probability of 1/3. What

was the state of the system (= beam of particles) just before the measurement?
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Problem 7.

Consider a sample of N magnetic atoms, each with spin 1/2. The system is known to be ferromag-

netic at very low temperatures; therefore as T → 0 all the spins will be aligned. At sufficiently high

temperatures, the spins will be randomly oriented. Neglect all other degrees of freedom, except for

spin orientation.

[5 pt] a. Define the entropy S of the system in statistical terms, using Ω(ni) = number of ways the

system can be produced corresponding to the set of average number of particles ni, where

i = 1, 2, . . .? (determine the range).

[5 pt] b. Obtain S = S(n1, n2, N), where n1 and n2 are the number of atoms with spin up and down,

respectively, and N = n1 + n2.

[5 pt] c. Define the entropy S of the system in terms of the specific heat, C(T ), and the (spin) temper-

ature, T .

[5 pt] d. When T → 0, obtain the values of n1 and n2. Also, determine the values of n1 and n2 when

T →∞.

[5 pt] e. Derive an expression for S = S(T ) and obtain S∞ = S(T →∞).

Problem 8.

A quantum linear harmonic oscillator of mass m, frequency ω and electric charge q moves in the x-

direction and is subject to a small, time-dependent perturbation to its Hamiltonian, Ĥ = Ĥ 0+ Ĥ ′(t).

[4 pt] a. Expanding the time-dependent states |Ψ(t)〉 =
∑

n an(t) e−iωnt |n〉 over the complete basis of

stationary states, Ĥ 0 |n〉 = ~ω(n+1
2
) |n〉, show that ωn = ω(n+1

2
).

[5 pt] b. Expanding the time-dependent states |Ψ(t)〉 =
∑

n an(t) e−iωnt |n〉 over the complete basis of

stationary states, Ĥ 0 |n〉 = ~ω(n+1
2
) |n〉, show that ȧn′(t) = 1

i~
∑

n〈n′|Ĥ ′(t)|n〉 eiω(n
′−n)t an(t).

[6 pt] c. By the time t= 0, the system is prepared to be in its ground state, and the perturbation is

turned on: Ĥ ′(t) = λĤ 1(t)·Θ(t), where Θ(t< 0) = 0 and Θ(t> 0) = 1. Expanding an(t) =∑∞
k=0 λ

ka(k)
n (t) for small λ, show that a(1)

n (T ) = 1
i~

∫ T
0

dt 〈n|Ĥ ′(t)|0〉 einωt, for T > 0.

[2 pt] d. The electric field ~E(t) = êxE0 cos(Ωt) Θ(t) is turned on. Determine the perturbation Ĥ 1(t).

[5 pt] e. Compute (to lowest nonzero order in perturbation theory and ignoring the onset of any mag-

netic field) the transition amplitude a0→n(T ) and probability of the oscillator to be found in

the nth excited state after the finite amount of time T . (Hint: x̂ =
√

~/2mω(â†+â) may be

useful.)

[4 pt] f. Verify that your result is finite at the resonance frequency, Ω→ ω, and determine the condition

on the magnitude of the perturbing electric field ~E for this result to be valid as a perturbative

computation.


